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ABSTRACT 

After the terrorist attacks of September 11, 2001, questions developed over how 

quickly the country could respond if a bioterrorism attack was to occur.  “Syndromic 

surveillance” systems are a relatively new concept that is being implemented and used by 

public health practitioners to attempt to detect a bioterrorism attack earlier than would be 

possible using conventional biosurveillance methods. The idea behind using syndromic 

surveillance is to detect a bioterrorist attack by monitoring potential leading indicators of 

an outbreak such as absenteeism from work or school, over-the-counter drug sales, or 

emergency room counts.  The Center for Disease Control and Prevention’s Early 

Aberration Reporting System (EARS) is one syndromic surveillance system that is 

currently in operation around the United States. 

This thesis compares the performance of three syndromic surveillance detection 

algorithms, entitled C1, C2, and C3, that are implemented in EARS, versus the CUSUM 

applied to model-based prediction errors.  The CUSUM performed significantly better 

than the EARS’ methods across all of the scenarios evaluated.  These scenarios consisted 

of various combinations of large and small background disease incidence rates, seasonal 

cycles from large to small (as well as no cycle), daily effects, and various levels of 

random daily variation.  This results in the recommendation to replace the C1, C2, and 

C3 methods in existing syndromic surveillance systems with an appropriately 

implemented CUSUM method.   
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THESIS DISCLAIMER 

The reader is cautioned that computer programs developed in this research may 

not have been exercised for all cases of interest. While every effort has been made, within 

the time available, to ensure that the programs are free of computational and logic errors, 

they cannot be considered validated. Any application of these programs without 

additional verification is at the risk of the user.  
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EXECUTIVE SUMMARY 

 After the terrorist attacks of September 11, 2001, many questions arose over how 

quickly the country could respond if a bioterrorism attack were to occur.  Using 

syndromic surveillance for early event detection of a bioterrorism attack and situational 

awareness during the course of the attack is a relatively new concept that is becoming 

used in the public health world.  The idea behind using syndromic surveillance is to 

detect a bioterrorist attack by monitoring potential leading indicators of an outbreak such 

as absenteeism from work or school, over-the-counter drug sales, or the number of people 

presenting at an emergency room that exhibit a specific chief complaint.  Three such 

syndromic surveillance algorithms which have been used by the Center for Disease 

Control and Prevention’s (CDC) program entitled Early Aberration Reporting System 

(EARS) are the C1, C2, and C3 methods.  

Currently almost no published performance analysis comparisons between the 

EARS methods and any other methods exist.  This research evaluates the performance of 

the EARS methods versus a cumulative sum (CUSUM) method applied to forecast errors 

of an “adaptive regression with sliding baseline” model.  The adaptive regression with 

sliding baseline was used to predict the current day’s observation, and this prediction was 

compared to the actual count.  Counts that exceed the predictions are evidence of a 

possible bioterrorist attack or a natural disease outbreak. Three adaptive regression 

models were fit, each using a sliding baseline based on a different amount of historical 

data: the previous eight weeks; the past seven days (corresponding to what is used in the 

C1, C2, and C3 methods); and the “optimal” amount of historical data that minimizes the 

forecast errors under each of the background disease incidence scenarios. 

The methods were compared using synthetic syndromic surveillance data, 

simulated in such a way as to exhibit the major characteristics of syndromic surveillance 

data.  Examples of these characteristics are: large and small baseline disease incidence; 

small, large, and no seasonal cycles; day-of-the-week effects; and small and large daily 

random variations. The large baseline disease incidence daily variation was generated by 

a random normal distribution, and the small baseline disease incidence daily random 



 xviii

variation was generated by a random lognormal distribution.  Each daily observation 

generated was rounded up to the nearest whole number in order to make it a realistic 

count.  The reason for using simulated data was to be able to compare the methods’ 

relative performance under known and controlled conditions. 

The analysis was conducted on 10 cases that mimicked different types of 

background disease incidence behavior.  Six cases were examined using a large baseline  

mean disease incidence of 90, which involved three seasonal cycles (none, small, large), 

and two daily variations (small and large).  Two cases were examined using a small 

baseline disease incidence of 0, which involved two daily variations (small and large).  

Finally, two cases were examined with day-of-the-week effects included: one large 

baseline disease incidence and one small baseline disease incidence.  Each algorithm (C1, 

C2, C3, and the CUSUMs with the three sliding baselines) was evaluated for each case 

for various sizes of disease outbreaks.  An outbreak was defined as a linear increase up to 

some day “X”, followed by an equal linear decrease back to the normal incidence rate.  

Outbreak durations from three to fifteen days were evaluated.  Three outbreak 

magnitudes were evaluated for each large count case:  small, medium, and large.  Four 

different outbreak sizes were evaluated for each small count case:  small, medium, large, 

and extra-large, with the outbreak magnitudes for each size differing between the cases 

when daily variation was small and when it was large.  

Two comparison metrics were used to analyze each algorithm’s performance 

under each set of conditions. The first metric was the average time to first signal (ATFS) 

given a true signal; the goal for this measurement was to measure how quickly each 

method signaled an alarm, given that the method detected the outbreak within its 

duration.  In the conduct of the simulations, the signal threshold was first set such that the 

procedures had equal ATFS under some background (non-outbreak) disease incidence 

scenario. The second metric was the fraction of the outbreaks that were not detected 

within their duration for each duration length (fraction missed).  Both comparison metrics 

were taken into account when evaluating the relative performance of the algorithms for 

certain background disease incident patterns and various outbreak magnitudes and 

durations.  



 xix

A clear conclusion from this work is that the CUSUM with an eight week and 

“optimal” sliding baseline performed significantly better in all the scenarios evaluated.  

While the C1 and CUSUM with a seven day sliding baseline tended to have slightly 

shorter ATFS given a true signal, this came at the expense of missing a much greater 

number of outbreaks than the CUSUMs with either the “optimal” or 56 day sliding 

baseline.  This difference in performance is evident in all outbreak magnitudes but is 

most evident with the larger magnitude outbreaks. The three EARS methods performed 

similarly across all simulations, generally with only relatively small differences in 

performance.  Of the EARS methods, the C2 method had the lowest fraction missed on 

the majority of the simulations, but the C1 was typically faster than the C2 and C3 for the 

ATFS given a true signal. The C3 method’s performance varied, but it was typically 

outperformed by the C1 in the ATFS given a true signal and the C2 in the fraction 

missed.  

Overall, the CUSUM methods, particularly with the eight week and “optimal” 

sliding baselines, outperformed the EARS methods.  Therefore, standard syndromic 

surveillance systems using the EARS methods would benefit from replacing the EARS 

methods with a CUSUM method based on adaptive regression forecast errors, setting the 

CUSUM thresholds in a similar fashion as done in this research in order to minimize the 

false alarm burden as much as possible.   
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I. INTRODUCTION 

A. BACKGROUND 

Syndromic surveillance has been defined as the ongoing, 
systematic collection, analysis, interpretation, and application of real-time 
(or near-real-time) indicators of diseases and outbreaks that allow for their 
detection before public health authorities would otherwise note them.  It 
has also been defined as surveillance using health-related data that precede 
diagnosis and signal a sufficient probability of a case or an outbreak to 
warrant further public health response. 

 Fricker (2007a)   

1. Bioterrorism and Syndromic Surveillance 

In our world today, the threat of bioterrorism is very real, and the potential to be 

surprised by an attack is certainly a concern. As with any contagious disease outbreak, 

earlier detection allows for easier containment and fewer infections as well as, 

potentially, lives saved. Simply realizing that an attack or outbreak has occurred is a great 

leap forward in knowing what steps need to be taken in the interest of public health and 

safety. While a large-scale, fast-acting bioterrorism attack that sends hundreds of extra 

patients with similar symptoms to an emergency room would not go unnoticed for long, 

what if the attack were more subtle?  What if the attack was slow to act and caused a very 

gradual increase in the number of patients? Such a scenario might potentially go 

unnoticed for weeks or longer. This is exactly the sort of scenario that syndromic 

surveillance is intended to help with.  

After the terrorist attacks on September 11, 2001, many questions arose 

concerning how quickly the country could respond if a bioterrorism attack were to occur.  

Using syndromic surveillance systems to detect a bioterrorist attack is a relatively new 

concept that emphasizes timeliness.  Essentially, syndromic surveillance uses emperical 

methods to attempt to sniff out sudden but relatively small changes in some normal rate 

of illness occurrence, hopefully leading to proper and timely diagnosis of a potentially 

lethal situation that might otherwise go unnoticed for quite some time. Syndromic 
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surveillance can monitor many indicators of an outbreak, such as absenteeism from work 

or school, over-the-counter drug sales, or emergency room entries that exhibit a 

respiratory complaint.  Thus, one of the fundeamantal goals of syndromic surveillance is 

to gain time during which the public health system can better respond:     

The advantage of syndromic surveillance is the lead-time it 
provides public health authorities to take more effective public health 
actions.  What syndromic surveillance allows is not necessarily earlier 
diagnosis per se but the ability to mobilize public health investigation and 
response capabilities before disease an out-break confirmation. 

Sosin (2003) 

 

Another goal is to help manage the response to an outbreak or an attack:     

More recently, the purpose of syndromic surveillance has been 
expanded to include using existing health data in real time to provide 
immediate analysis and feedback to those charged with investigation and 
follow-up of potential outbreaks.  This broader focus on electronic 
biosurveillance includes both early event detection and situational 
awareness.  Situational awareness is the real-time analysis and display of 
health data to monitor the location, magnitude, and spread of an outbreak, 
as well as the availability and application of public health and medical 
resources to the outbreak. 

Fricker (2007a). 

 

Although the capabilities of syndromic surveillance are becoming better 

understood as the result of on-going research, the current state of knowledge is limited on 

its effectiveness when used to detect disease outbreaks and bioterrorism attacks.  Sosin 

(2003) analyzes the case for skillful investment using syndromic surveillance, and 

Shmueli (2006) presents the statistical challenges and questions that still needed to be 

answered in biosurveillance. Although some questions remain unanswered, 

improvements and studies are being conducted, and many public health officials believe 

that syndromic surveillance is a promising tool for detecting a disease outbreak or 

bioterrorism attack in a timely and efficient manner.  See Fricker (2007a), Fricker and 

Rolka (2006), Stoto et al. (2006) and Fricker (2007b) for more detailed discussions. 
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Currently, there are a number of syndromic surveillance systems that use the 

EARS detection algorithms.  These algorithms were initially developed for the EARS 

syndromic surveillance system (www.bt.cdc.gov/surveillance/ears/) which was “designed 

for monitoring for bioterrorism during large-scale events that often have little or no 

baseline data” (Fricker, 2007a).  These methods were then incorporated into the BioSense 

system (www.cdc.gov/biosense).  BioSense is a federally directed effort by the CDC that 

currently uses the EARS’ C1 and C3 algorithms and the W2 algorithm (a variant of the 

C2 algorithm):   

Begun in 2003, BioSense is intended to be a United States-wide 
electronic biosurveillance system that initially used Department of 
Defense and Department of Veterans Affairs outpatient data along with 
medical laboratory test results from a nationwide commercial laboratory.  
In 2006, BioSense began incorporating data from civilian hospitals as 
well.  The primary objective of BioSense is to expedite event recognition 
and response coordination among federal, state, and local public health 
and healthcare organizations. 

Fricker (2007a)   

2. Relevant Previous Syndromic Surveillance Research 

 The syndromic surveillance literature documents quite a number of efforts to 

develop and measure the performance of various individual detection algorithms.  

However, it contains very few comparisons between algorithms in order to assess the 

relative strengths and weaknesses of the algorithms.  It is as if everyone is trying to 

develop a new hammer, but few are comparing among the hammers to determine which 

are to be preferred.   See, for example, Brillman (2005), Farrington et al. (1996), and Reis 

et al. (2003). 

Examples of past research that do compare between detection methods include 

Fricker (2007b) and Stoto et al. (2006) who evaluated different methods’ performances in 

the context of syndromic surveillance.  In particular, they compared simultaneous 

univariate CUSUMs against a multivariate CUSUM.  The idea of their comparison was to 

evaluate whether it would be more effective to use simultaneous individual CUSUMs 

with each applied to a different data stream – say, each type of chief complaint at each 

hospital – or a multivariate method that evaluates a series of data streams – say, all chief 
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complaints at each hospital or one type of chief complaint across multiple hospitals.  It 

was found that under certain conditions the univariate CUSUMs outperformed the 

multivariate CUSUM, but under other conditions the multivariate CUSUM outperformed 

the univariate CUSUMs.  Their findings provided researchers and practitioners with some 

useful information about which method should be used in which situation.   

Other relevant past research includes Zhu et al. (2005) who conducted an initial 

evaluation of the EARS methods versus Shewhart “p-chart” and exponentially weighted 

moving average (EWMA) methods.  They concluded that the C2 method was best for 

autocorrelated data.  However, this is not surprising since they did not modify the 

application of the Shewhart and EWMA methods to account for the autocorrelation. 

 Currently, the EARS methods used for biosurveillance do not directly take into 

account trends, day-of-the-week effects, or certain other systematic behavior.  Burkom, 

Murphy, and Shmueli (2006) discuss options to account for these trends in their paper 

“Automated Time Series Forecasting for Biosurveillance.”  They use regression and time 

series methods to remove this behavior by subtracting forecasts from observations to 

form residuals for algorithmic input.  They describe and compare three forecast methods:  

a nonadaptive loglinear regression model using a long historical baseline, an adaptive 

regression model with a shorter, sliding baseline, and the Holt-Winters method for 

generalized exponential smoothing.   

Additional prior syndromic surveillance detection algorithm research is described 

in Woodall (2006), Shmueli (2006), Fricker (2007a), and Fricker and Rolka (2006).  Also 

see the abstracts and papers posted online for the journal Advances in Disease 

Surveillance (www.isdsjournal.org) and in the Morbidity and Mortality Weekly Report 

(MMWR) published by the CDC (www.cdc.gov/mmwr/). 

B. COURSE OF RESEARCH 

1. Research Objectives 

The objective of this research was to compare the performance of the C1, C2, and 

C3 EARS methods to a CUSUM-based method specifically designed for the syndromic 



 5

surveillance problem.  As was previously mentioned, all three of the EARS methods do 

not explicitly account for trends, day-of-the-week effects, or other systematic behavior.  

The EARS methods are compared to a CUSUM applied to forecast errors of an “adaptive 

regression” model as defined in Burkom et al. (2006).  Three adaptive regression models 

were fit, each with a different amount of historical data.  They are: (1) the previous eight 

weeks, as was done in Burkom; (2) the seven days of data corresponding to what is used 

in the C1, C2, and C3 methods; and, (3) the optimal length of data that minimizes the 

forecast errors under each of the background disease incidence scenarios.  Comparisons 

were made under a series of different scenarios, where each scenario was designed to 

mimic certain behaviors in syndromic surveillance data.  

2. Assumptions  

The comparisons were based on simulated syndromic surveillance data, both 

background disease incidence and outbreaks.  This simulated data was, by design and of 

necessity, somewhat idealized. Specifically, the simulated data was designed to exhibit 

the major characteristics of syndromic surveillance data in order to compare and contrast 

the relative performance of the various methods under these conditions.   

The objective was to gain insight into how the major features of syndromic 

surveillance data (e.g., large vs. small seasonal cycles, day-of-the-week effect vs. no 

effect, etc.) affect the relative performance of the various methods.  That is, for example, 

the goal is to understand which method or methods work best in data with large seasonal 

fluctuations with significant day-to-day variation compared to, say, data that has large 

seasonal fluctuations but little day-to-day variation or small seasonal fluctuations but 

large day-to-day variation. 

In the simulated data, the background disease incidence was characterized in 

terms of a mean disease incidence rate that varies according to a seasonal cycle and a 

day-of-the-week effect.  Individual daily counts were then generated as the sum of the 

mean disease incidence, an outbreak when appropriate, and a random deviation from the 

mean.  This is discussed further in the next chapter.  
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C. THESIS OUTLINE  

The thesis is organized as follows.  Chapter II describes how the synthetic 

syndromic surveillance data used in this research was simulated.  Chapter III describes 

the various detection algorithms which were used in this research.  Chapter IV describes 

the methodology used to evaluate the relative performance of the various methods 

studied, as well as a description of how various input and threshold values were chosen. 

Chapter V summarizes the results of the simulations, focusing on the large count, small 

count, and day-of-the-week effect results.   
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II. SIMULATING SYNDROMIC SURVEILLANCE  
DATA AND SCENARIOS 

A. DATA GENERATION ASSUMPTIONS AND SIMULATION 

1. Syndromic Surveillance Data 

Syndromic surveillance data generally contain various trends and cycles.  For 

example, syndromes related to the flu frequently exhibit a cycle in which disease 

incidence increases sometime in the fall or winter corresponding to the annual flu cycle.  

Other types of syndromic surveillance data may exhibit other types of seasonal cycles.  

Syndromic surveillance data also often exhibit day-of-the-week effects corresponding to 

the fact that, for example, people tend to go to hospital emergency rooms differentially 

depending on the day of the week.  Similarly, over-the-counter medication sales vary in a 

systematic way with day of the week (as well as holiday and seasonal cycles).  For a 

more detailed discussion and examples and plots of actual data, see Shmueli (2006), 

Lotze, et al. (2006), and Burkom et al. (2006). 

2. Generating Synthetic Syndromic Surveillance Data 

In order to capture the main features of syndromic surveillance data, the 

background disease incidence was characterized in terms of a mean disease incidence rate 

with a systematic seasonal (sinusoidal) cycle and day-of-the-week variation.  Individual 

daily counts were then generated as the sum of these systematic effects and a random 

deviation from the mean.  Specifically, a daily observation Xi, was simulated as 

( )max 0, ( ) ,  1, 2,...,i i i iX Y iβ α δ β= + + + =⎡ ⎤⎢ ⎥          (1) 

where: 

• β is the baseline disease incidence; 
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• α is the seasonal deviation from the baseline mean, calculated as 

[ ]sin(2 / 365)i A iα π= , where A is the amplitude (which is the maximum 

deviation from β)  with i corresponding to October 1st; 

• δ is the systematic deviation from the mean (day-of-the-week effect), 

where 7i iδ δ +=  for all i ; 

• ( )iY β is the random noise around the systematic component 

( )i iβ α δ+ + with 

o (large ) ~ (0, )i LY Nβ σ  and    

o (small ) ~ ( , )i sY LNβ µ σ ; 

and where •⎡ ⎤⎢ ⎥ is the ceiling function, which rounds the value up to the next largest 

integer. 

The simulated years were always 365 days long, but this is only relevant when 

calculatingα . Extending this data generation method to account for leap years is an 

unnecessary complication that was not considered in this work since it would not affect 

the results or conclusions. 

3. Discussion of Assumptions 

a. Seasonal Cycles 

In general, there is some semblance of an annual periodic cycle in 

syndromic data over the course of a year or two.  For example, the mean number of 

hospital respiratory chief complaints is likely to be higher in the month of February 

compared to the month of July.  This is in part due to what is commonly known as the flu 

season, beginning sometime in the late fall or winter and ending sometime in the late 

winter or spring.   

However, the rises and falls of this pattern occur at different times each 

year and, while there is a general pattern, each flu season has a different duration, 
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amplitude and start time.  Hence, going back years in the data in an attempt to model the 

seasonal cycle, if such data exists, is generally not useful for syndromic surveillance.    

In spite of the fact that the annual pattern is typically unpredictable and 

variable, for this work an artificial sinusoid was used in order to simulate the general rises 

and falls in real data. Although the sinusoid is an idealized characterization of the natural 

periodicity of disease incidence data, as will be demonstrated in more detail in the next 

chapter, none of the methods evaluated are designed to, nor are they capable of, 

exploiting this feature of the synthetic data.  Simply put, the EARS methods only use 

seven days of past data and so are incapable of modeling the sinusoid.  Similarly, the 

adaptive regression uses a linear model fit to 8-weeks or less of past data and thus is also 

incapable of modeling the sinusoid.  The result is that the perfect sinusoids of the 

synthetic data are no more predictable for the methods being evaluated than the real, less 

predictable seasonal variations. 

b. Day-of-the-Week              

Typically, there is a day-of-the-week effect in syndromic surveillance 

data.  For example, when looking at hospital chief complaint data, there is a systematic, 

daily trend that appears in most data (c.f. Brillman, 2005, and Shmueli, 2006). This day-

of-the-week effect may differ depending on the location, time of year, or other factors. 

Similarly, when looking at over-the-counter medication sales, the counts generally 

exhibit a regular day-of-the-week effect. This work included a day-of-the-week effect by 

including the previously mentioned parameter δ  in the data generation model. The main 

idea in this research was not that the day-of-the-week effect be accurately simulated, due 

to the variable nature of this effect in real data. What was most important, however, was 

to demonstrate the implications of including this effect in some of the simulations – 

namely, that the effect can be included in the simulations, and the subsequently 

“removed” by the regression.  

For the simulations, the day-of-the-week effect δ  is the systematic 

deviation from the baseline (with annual periodic cycle – i.e., the sinusoid), where each 

day of the week had a certain iδ  value assigned to it. The iδ  values were rather 
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arbitrarily chosen and were defined in terms of σ, the standard deviation parameter of Y, 

for both large and small count simulations as follows: δ  = −0.5σ on Sunday; δ  = 0.1σ 

on Monday; δ  = 0.2σ on Tuesday; δ  = 0.3σ on Wednesday; δ  = 0.4σ on Thursday; δ  

= 0 on Friday; and δ  = −0.3σ on Saturday. It should be noted that these values result in a 

positive bias of 0.2σ, which essentially just increases the baseline for the scenarios which 

included the day-of-the-week effect. This change did not affect the relative performance 

of the methods.  

The day-of-the-week effect was not included in the majority of the 

simulations because it did not affect the results.  Simply put, all the methods were 

effective at accounting for and eliminating day-of-the-week effects. When reviewing 

simulation results, the day-of-the-week effect can be assumed to be zero, except where 

explicitly stated.  

c. Holiday Effects 

In addition to the day-of-the-week effect, there is also a holiday effect that 

often appears in the data.  For example, stores may be closed on certain holidays and 

people go to hospitals in much fewer numbers. This is an issue in real data but will be left 

to be addressed in later work; in the current work, the methods utilized can be naturally 

extended to account for holiday effects. 

d. Long Term Trends 

The issue of long term trends also exists in hospital admittance data 

where, over time, the number of people presenting gradually rises or falls, perhaps in 

conjunction with changes in the surrounding popuation.  Since the focus of this work is 

on a sudden, relatively small shift in the mean, long term trends that span back many 

months were not included in the work.  Furthermore, methods that are effective at 

modeling the seasonal sinusoid of the synthetic data will also be able to effectively model 

a long term linear trend.  Hence, including such a long term trend in the data generation 

model would have been an unnecessary complication. 
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e. Daily Random Variability 

As with most processes, daily random variability occurs in syndromic 

surveillance data.  For example, if the mean number of chief complaints in a hospital 

during the month of August over the last few years is fifty and, having chief complaints 

between, say, forty and sixty would not be considered particularly strange.  

This work included daily random variability by way of generating data 

with random variability around the systematic component which represents the mean 

disease incidence rate.  In the large count scenarios the daily random variability was 

normally distributed around the systematic mean component with a distribution mean of 

zero and various standard deviations.  The daily variation in the small counts was 

modeled as a lognormal with a distributional mean and standard deviation.   

The choice of normally distributed daily variation for the large counts was 

based on the idea that large sums of individuals randomly arriving at a hospital 

emergency room ought to be approximately normally distributed via the Central Limit 

Theorem.  For the small counts, the daily variability should be skewed to the right and 

bounded by zero. The lognormal provided a convenient way to model this behavior. 

f. Whole Number Counts 

Although the method of data generation inherently produces non-integer 

values, whole number counts were used in the data simulation. This was achieved by 

using the “ceiling” function in MatLab, which rounds a non-integer value generated by 

the data generation model up to the next largest integer.  In addition, for some 

combinations of parameters, it is possible for the term ( )i i iYβ α δ β+ + + in Equation (1) 

to generate negative numbers.  Hence, the “max” function was used in the data generation 

function to ensure all the synthetic observations were non-negative. 
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B. SIMULATION SCENARIOS 

1. Case and Scenario Definition 

A “case” for the purposes of this work is defined as a certain baseline ( β ), 

amplitude ( A ), mean (µ), and standard deviation (σ ) combination. For each of these 

cases, three and four different outbreaks were simulated for the large and small count 

cases, respectively. A “scenario” is defined as a certain baseline, amplitude, mean, 

standard deviation, and outbreak size combination.  

2. Large and Small Count Parameters 

Once again, the overall goal of this work was to compare the relative performance 

of several methods for different disease incidence cases.  Specifically, the two cases of 

small and large baseline values, parameterized as β = 90 and β = 0, were studied.  For 

each of these, all possible combinations of those baselines with varying standard 

deviation and mean values were created, as shown in Tables 1 and 2. 

The values in Table 1 and Table 2 result in 1β x 3A x 2σ = 6 parameter 

combinations (cases) for the large count and 1β x 1A x 1µ x 2σ = 2 parameter 

combinations for the small count. It should be noted that there are three amplitude sizes 

for the large counts, but only one for the small counts. Originally, there were three small 

count amplitude sizes, but in running the simulations it became clear that the adaptive 

regression methodology was very effective at removing the amplitude effect, so it was 

decided that there was no need to vary amplitude for the small counts. This reduced the 

total number of simulation scenarios to be run.  This is discussed further in Chapter IV.  

Day-of-the-week effects were also added to one large count case and one small 

count case for a total of 10 parameter conditions.  This, combined with three different 

size outbreaks for the large counts and four different size outbreaks for the small counts, 

resulted in 33 simulation scenarios, which were used to assess the relative performance of 

the six methods (C1, C2, and C3 plus the CUSUM with three different sliding baselines). 
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none small large
A 0 20 80
σ n/a 10 30

Large Count Parameters

 
Table 1.   Parameter values for β = 90 (large count). 

 

none small large
A n/a n/a 6
σ n/a 0.5 0.7
µ n/a 1.0 1.0

Small Count Parameters

 
Table 2.   Parameter values for β = 0 (small count). 

 

The “large” values in Table 1 result in disease incidence patterns similar to the 

CDC’s S08 simulated datasets at www.bt.cdc.gov/surveillance/ears/datasets.asp. The 

“small” and “none” values result in disease incidence patterns similar to the S01 dataset, 

as well as other patterns that are intermediate between S01 and S08.  Combinations of the 

values in Table 2 result in disease incidence patterns similar to S03, S04, S15, and S34. 

3. Imposing Outbreaks 

An outbreak in this work was defined to be a linear increase up to some day “X”, 

followed by an equal linear decrease back to the normal incidence rate. Outbreaks 

durations from three to fifteen days were evaluated.  For example, a seven day outbreak 

starting on day one would include a linear increase in the mean up to day four where it 

would peak and then decrease back to its original incidence rate on day eight.  Small, 

medium, and large outbreaks for the large baseline means were defined as 10%, 25%, and 

50% of the baseline mean, respectively. The four outbreak magnitudes for the small 

count cases were small, medium, large, and extra large; these were calculated by taking 

10%, 25%, 50%, and 100% of the sum of the expected value and three standard 

deviations of Y, respectively.   
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In order to ensure a proper “warm-up” period, outbreaks were imposed on the 

synthetic syndromic surveillance data only after 100 days of no-outbreak data had been 

generated.  During this period, each method was run on the data, just as would be done in 

an actual syndromic surveillance application.  Also, in order to ensure a random 

beginning day for the outbreak, the first day of this 100 day warm-up period was a 

random day in the year, with the outbreak immediately following this 100 day period.  
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III. DESCRIPTION OF THE DETECTION ALGORITHMS 

A. CURRENT UNIVARIATE METHODS 

1. C1, C2, and C3 Methods 

As described in Fricker (2007a), the current EARS methods called “C1,” “C2,” 

and “C3” are defined as follows. Let ( )X t be an observation for period t, such as the 

number of individuals arriving to a particular hospital with a specific syndrome on day t.  

The C1 method calculates the statistic 1( )C t for day t as  

1
1

1

( ) ( )( )
( )

X t X tC t
s t
−

=   

where 7
1 1
( ) ( ) / 7t

i t
X t X i−

= −
= ∑ and ( )27

1 11
( ) ( ) ( ) / 6t

i t
s t X i X i−

= −
= −∑ , where 1( )X t  and s1(t) 

are the moving sample mean and standard deviation, respectively.  If )(tX  equals 

1( )X t for seven continuous days (which can sometimes occur, particularly in the small 

count scenarios), )(1 ts  is automatically set to the previous day’s )(1 ts .  (Setting )(1 ts  to  

1( 1)s t − avoids dividing by zero when calculating the C1 statistic.)  The C1 method 

signals an alarm at time t when the 1C  statistic exceeds a fixed threshold, which in EARS 

is fixed at three sample standard deviations above the moving sample mean: 1( ) 3C t > . 

The C2 method is similar to the C1 method, but incorporates a two-day lag in the 

mean and standard deviation calculations.  It calculates 

3
2

3

( ) ( )( )
( )

X t X tC t
s t
−

= ,  

where 9
3 3
( ) ( ) / 7t

i t
X t X i−

= −
= ∑ and ( )29

3 13
( ) ( ) ( ) / 6t

i t
s t X i X i−

= −
= −∑ , and signals an alarm 

when 2 ( ) 3C t > . 
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The C3 method uses the C2 statistics from the past three days to calculate the C3 

statistic, signaling an alarm when 3( ) 2C t > . The C3 statistic for day t is calculated as  

[ ]
2

3 2( ) max 0, ( ) 1
t

i t
C t C i

−

=

= −∑ . 

For the implementation of the three methods in this work, fixed thresholds as 

described above were not used. Instead, the thresholds were adjusted to achieve 

comparable average time to first signal (ATFS) for each scenario without outbreaks.  In 

industrial statistical process control (SPC) terms, this is equivalent to choosing a 

threshold to achieve a desired in-control average run length. 

2. The CUSUM Method 

The cumulative sum (CUSUM) is a well known statistical process control 

methodology.  Montgomery (2001) provides an excellent introduction to the CUSUM 

method in an industrial statistical process control setting and Hawkins and Olwell (1998) 

provide a comprehensive treatment of the CUSUM.  Here, the focus is on the 

standardized CUSUM as described in Montgomery.  Let 

i
i

XY µ
σ
−

=   

where iX  is the ith observation, µ  is the expected mean, and σ  is the standard 

deviation.  If it is assumed that the iX s are normally distributed so that 2~ ( , )iX N µ σ , 

then ~ (0,1)iY N .  The CUSUM for iY at time i, calculates 

 1max 0,i i iC y k C+ +
−⎡ ⎤= − +⎣ ⎦ .  (2) 

The value k is called the reference value and is generally set at one-half of the shift in the 

mean that is desired to be detected quickly.  In this research, iY will be the difference 

between the prediction an adaptive regression and the observed count and thus k was set 

in terms of a fraction of the standard deviation of the prediction error. 
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For the CUSUM, the threshold h was set such that when there has not been a 

disease or bioterrorism outbreak, the ATFS is equal to the ATFS for the EARS methods.  

If at some point C h+ >  , it is flagged as a possible disease outbreak or bioterrorism 

attack. 

The CUSUM defined in Equation (2) is a one-sided CUSUM, meaning that, in 

this case, it will only detect increases in the mean.  If it is important to detect both 

increases and decreases in the mean, a second CUSUM can be used to flag decreases.  

However, in syndromic surveillance, decreases are not relevant since it is only important 

to quickly flag increases in disease incidence.  

B. ADAPTIVE REGRESSION   

As stated before, syndromic surveillance data often has systematic trends, such as 

seasonal cycles, day of the week effects, and other patterns.  One interpretation of this 

fact is that, given the last few weeks of counts are “high” on average, one would 

generally expect the next day’s count to be “high” as well – that is, the counts exhibit 

autocorrelation.  However, traditional statistical process control methods such as the 

CUSUM assume that observations are independent and identically distributed (i.i.d.), 

which is to say that these methods assume that the data do not contain such trends 

(Fricker, 2007a).  This is clearly not the case with disease incidence data. 

One approach is to model the systematic component of the data, use the model to 

forecast the next day’s observation, and then apply the standard SPC methods to the 

forecast errors.  For a model that results in i.i.d. forecast errors, such an approach is 

appropriate.  Examples in the literature include the CUSUM applied to prediction errors 

in Brillman et al. (2005), the CDC’s cyclical regression models discussed in Hutwagner 

et al. (2003), log-linear regression models in Farrington et al. (1996), and time series 

models in Reis and Mandl (2003).  See Shmueli (2006) for additional discussion of the 

use of regression, and see time series methods for syndromic surveillance and Burkom et 

al. (2006) for a comparison of two regression-based methods and an exponential 

smoothing method applied to biosurveillance forecasting.  Also see Lotze et al. (2006) for 

a detailed discussion of preconditioning applied to syndromic surveillance data. 
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The challenge for the purposes of this work was to construct a model capable of 

handling the systematic trends in the data.  As stated earlier, for the purposes of these 

simulations, an assumption was made in order to model those trends: the mean follows an 

annual sinusoidal cycle.  However, it was not assumed that it would be possible to go 

back far enough in time to model the sinusoidal cycle and make accurate predictions (i.e., 

to go back years in the data to predict the time in the current year one would expect to see 

a certain part of the sinusoid). There are two reasons for this: 

(1) Multiple years of data would be needed, which is undesirable both because the 

data may not be available and because, even if it is, changes in population and 

other factors are likely to make older data unreliable. 

(2) The annual cycle in the data generated in this work was fixed, which is 

artificial.  In real data, disease incidence is variable, with the beginning, end, 

and amplitude of the sinusoidal pattern all being essentially random from year 

to year.  

In order to still to capture the systematic component (i.e., the current sinusoid) of 

the data, yet not to attempt to predict it from year to year, the “adaptive regression model 

with sliding baseline” of Burkom et al. (2006) was employed.  It can be described as 

follows.  Let Xt be the observation (say chief complaint count on day t); the observations 

are regressed over time for some fixed number of time periods n (Burkom et al. used an 

8-week period).  Then the regression would look like 

0 1tX tβ β ε= + +  

where 0β is an intercept term, 1β is the slope, andε is the error term, meaning that, due to 

random variability, the model cannot fit perfectly.  The model is fit using the least 

squares approach. The estimates of the counts for each time period ,..., ( 1)t t n− − , where 

time is always relative to the current observation, are 
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0 1
ˆ ˆˆ

tX tβ β= +  ,  

and the forecast error for time t+1 is 

( )1 1 0 1
ˆ ˆ 1t tX tβ β+ +

⎡ ⎤∆ = − + +⎣ ⎦ .  

Within the framework of syndromic surveillance, the model is refit at each time t 

(say, each day) and, if the model fits well, then one hopes that the i∆ s are “small” 

according to some measure, such as mean square or mean absolute deviation.  In the 

above two equations, subscripts for the time period t were left off of the coefficient terms 

for the sake of clarity, but it should be understood that, really, the coeffecients are 

reestimated at each time t.  

One can easily generalize this approach to allow for nonlinearities.  This may or 

may not be important, depending on how long of a time period is considered and how big 

the amplitude of the sinusoid is. To allow for a quadratic trend, one would include a 

quadratic term in the model,  

2
0 1 2tX t tβ β β ε= + + + , 

and estimate the forecast error as  

( ) ( )2
1 1 0 1 2

ˆ ˆ ˆ1 1t tX t tβ β β+ +
⎡ ⎤∆ = − + + + +⎣ ⎦ . 

Finally, when introducing day-of-the-week effects in the data (and keeping the 

quadratic term), the model becomes 

2
0 1 2 3 4 5 6 7 8t Mon Tues Wed Thurs Fri SatX t t I I I I I Iβ β β β β β β β β ε= + + + + + + + + + , 

where the Is are indicators that take on the value 1 if t is that day of the week and 0 

otherwise.  The forecast error when day t+1 is a Sunday is 

( ) ( )2
1 1 0 1 2

ˆ ˆ ˆ1 1t tX t tβ β β+ +
⎡ ⎤∆ = − + + + +⎣ ⎦  

and for any other day of the week it is 
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( ) ( )2
1 1 0 1 2

ˆ ˆ ˆ ˆ1 1t t jX t tβ β β β+ +
⎡ ⎤∆ = − + + + + +⎣ ⎦  

where j=3 for Monday, j=4 for Tuesday, etc. 

Due to the nature of the regression model used, it attempts to predict the mean 

(i.e., the expected value) of the process which is generating the data, and, therefore, it 

will predict non-integer count values.  Although the actual count values were forced to be 

integers, these predicted counts produced by the regression were not.  Forcing these mean 

values to be whole numbers would only add excess noise to the simulations. 
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IV. COMPARISON METHODOLOGY 

This chapter describes the methodology used to evaluate the relative performance 

of the various methods studied, as well as a description of how various input and 

threshold values were chosen. A master table of all parameters, input values, and 

threshold values is included at the end of the chapter. 

A.  METRICS 

1. Average Time to First Signal Given a True Signal  

The average run length (ARL) metric that is common in the SPC literature was 

not used in this work.  Instead, a “time to first alarm” metric was employed.  The problem 

with using the ARL is that the autocorrelation in syndromic surveillance data causes 

sequences of alarms to occur.  Therefore, a metric similar to what is sometimes used in 

the SPC literature called “average time to signal” (ATS) was employed, but only the first 

signal was counted as an alarm; thus, the metric for this work was the “average time to 

first signal” (ATFS).   

In the conduct of the simulations, the thresholds were set such that all methods 

had the same ATFS under some background (non-outbreak) disease incidence scenario; 

then, under outbreak conditions, the ATFSs given a true signal was calculated for the 

methods for each outbreak scenario.  The goal for this measurement was to measure how 

quickly each method signals an alarm, given that the method detects the outbreak. In 

instances when an outbreak goes undetected by some method during its duration but is 

later detected, that detection is not counted in the ATFS given a true signal.  

2. Fraction Missed 

Another useful metric used to evaluate relative performance of the methods was 

the fraction missed.  Unlike in the typical SPC comparison where the mean is assumed to 

jump and remain in an “out-of-control” condition until the detection algorithm signals, in 

syndromic surveillance an outbreak period is transitory. As such, it is possible for a 
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detection algorithm to miss the outbreak and subsequently signal after the outbreak has 

passed.  Such signals are useless and it is important to understand how well a detection 

algorithm signals during the outbreak period.  The fraction missed shows the fraction of 

the time that a method misses detecting an outbreak. Of course, the higher the fraction 

missed for a particular method, the worse the performance of that method.  

B.  CHOOSING INPUT AND THRESHOLD VALUES 

1. Optimizing n for the Adaptive Regression Model 

 When using regression to predict future observations, the question that naturally 

arises is how much historical data should be used in order to fit the regression.  In this 

work, two alternatives were drawn from existing practice and the literature: (1) seven 

days of historical data, which matches what is used in the C1, C2, and C3 EARS 

methods, and (2) eight weeks of historical data as recommended by Burkom et al. (2006). 

 Of course, with too few days of data, the regression model would have a tendency 

to follow the daily variability too much, missing the actual underlying data trend. While, 

generally speaking, more data should allow for a more detailed regression model and 

presumably a better prediction, often in syndromic surveillance the amount of available 

data is limited, or the older data is of questionable relevance due to changing trends or 

phenomena.  Hence, there is a trade-off to be made between the amount of historical data 

used in a particular model and the predictive accuracy of that model. 

 This led to attempting to come up with an “optimal” n (number of days to regress 

over) for a given type of model for each case (baseline, amplitude, and standard deviation 

combination) under consideration since, just due to the daily variability, even a regression 

that perfectly captured the underlying data trend would have both positive and negative 

residuals (the difference between the actual observation and the predicted observation).  

The best n would be the n which minimizes the average squared residual over the entire 

simulated data series.  

 Two separate regression models were evaluated in order to decide on the best 

model, and an optimal n was found for the best model.  The first model considered was a 

simple linear regression model with an intercept term and a slope term; this model found 
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the least-squares best fit line for the counts of the past n days and predicted the next day’s 

count.  The second was a multiple regression model with a quadratic term – i.e., the 

model had an intercept, slope, and quadratic term.  This model was like the first with the 

added ability to capture curves in the data with the squared term, where the squared term 

was simply the time squared.   

 Simulations were run in order to determine the optimal n for each model. The 

results of the simulations were plotted, and an example of one such plot is shown in 

Figure 1 for the case of baseline 90, amplitude 80, and standard deviation 10.  The 

optimal n was chosen simply by visual inspection with the criteria that the n be as small 

as possible but also as close to achieving the minimum average squared residual as 

possible.  This meant that the chosen “optimal” n was the smallest n that achieved most 

of the reduction in the average squared residuals, as opposed to the n that occurred 

precisely at the minimum point on the curve. The result of this metric was that, given a 

chosen “optimal” n, there might be a larger n (such as the eight weeks used by one of the 

CUSUM methods) that performed better in terms of minimizing the average squared 

residual, simply because it used more days of data. For the curves in Figure 1, the 

“optimal” n was chosen to be 15 days for the linear model and 50 days for the quadratic 

model. The increase in average squared residual as the n gets large is due to the model 

over-regressing the data. That is, the regression model is using too many days of data to 

regress over, and it starts missing the more localized in-control trends. 

 Figure 1 also shows that the linear model achieved the same minimum average 

squared residual as the quadratic model but with a smaller n.  This occurred consistently 

for all of the scenarios (see Appendix A), which led to the linear model being chosen as 

the superior model for all scenarios. 
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Figure 1.   Predictive performance of the linear and quadratic models for baseline 

90, amplitude 80, and standard deviation 10. 
 
 

 Tables 3 and 4 show the “optimal” n for all the scenarios without and with the day-

of-the-week effects, respectively.  As just described, it shows that the linear model 

achieved smaller ns than the quadratic model.  It is important to note that when the 

amplitude is set to zero, there will never be an n value that over-regresses, causing the 

average squared residual to increase as n increases.  The average squared residual will 

always decrease with an increase in n even if it only decreases marginally, theoretically 

making the optimal n value infinity.  As before, visual inspection was used as before to 

pick an n value where the average squared residual value began to flatten out.    

 When the day-of-the-week effect is included, additional terms are needed in the 

predictive model, which increases the required amount of historical data needed to 

estimate the coefficients for those terms. For example, the presence of day effects in 

Burkom et al. (2006) is one of the reasons they used eight weeks of historical data. Table 

4 summarizes the results. 
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β A σ
"optimal" 
n (linear)

"optimal" n 
(quadratic)

no day-of-the-week effects

45
0 6 0.5 25 45
0 6 0.7 25

55
90 0 10 35 50
90 0 30 45

30 40 55
90 20 10 35 50

30 30 50
90 80 10 15 28
90 80

90 20

"Optimal" n  Values for Adaptive Regression

 
 

Table 3.   “Optimal” n values for linear and quadratic adaptive regression models, with no 
day-of-the-week effect. 

 

β A σ
"optimal" 
n (linear)

"optimal" n 
(quadratic)

"Optimal" n  Values for Adaptive Regression
with day-of-the-week effects

75
90 80 10 40 55
0 6 2.8 56

 
Table 4.   “Optimal” n values for linear and quadratic adaptive regression models, with the 

day-of-the-week effect included. 
 

2. Choosing k 

In Montgomery and Peck (1992) the variance of the predication error for a new 

observation y* in a linear regression is 

( )2*
* * 2 1ˆ( ) 1Y

xx

x x
Var y y

n S
σ

⎡ ⎤−⎢ ⎥− = + +⎢ ⎥
⎢ ⎥⎣ ⎦

 

where: 
• *ŷ is the predicted value and *y  the observed value for a specific *x value; 
• n is the number of (x,y) pairs of data in the original regression; 
• xxS is the sum of the squared differences between the xs in the regression 

and the mean of the xs: 
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• ( )
2

1

n

xx i
i

S x x
=

= −∑ ; 

• ( )2*x x− is the squared difference between the *x value for the prediction 

and the mean of the n xs in the regression model; and, 

• 2
Yσ is the variance of Y which can be estimated as ( )

2
2

1

1ˆ ˆ
2

n

i i
i

y y
n

σ
=

= −
− ∑ . 

 
Thus, the standard deviation of the prediction error can be calculated as 
 

 
( )2*

1. .(prediction error) 1Y
xx

x x
s d

n S
σ

−
= + + , (3) 

 
  
which then can be used as some multiple or fraction of the value for k in the univariate 

CUSUM. 

For this problem, Equation (3) can be further simplified, since the x values are 

sequential integers representing time relative to the current day.  That is, n is the number 

of days to regress over, with yesterday being “day n” and going back in time to “day 1” 

(which is the nth day in the past relative to today). By always trying to predict today’s 

value and using the regression fit on the past n days, one can set * 1x n= + and the mean 

is always ( )1 / 2x n= + .  Therefore,  

 

 ( )
2 2 22* ( 1) ( 1) ( 1)1

2 2 2
n n nx x n + + +⎛ ⎞ ⎛ ⎞− = + − = =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
. (4) 

 
Similarly, one can solve for xxS  as follows: 
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( )

( )

2

1
2

1

1 / 2
2

1

3 2

1
2

2

1 1 1 12 3
3 2 2 2

n

xx i
i

n

i

n

i

S x x

ni

i

n n n

=

=

−

=

= −

+⎛ ⎞= −⎜ ⎟
⎝ ⎠

=

⎛ ⎞− − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + +⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎜ ⎟⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠

∑

∑

∑
 

where the third step follows assuming n is odd and the last step follows since 

( )2 3 2

1

1 2 3
6

k

x
x k k k

=

= + +∑ .  After some algebra, this becomes  

  
( )2 1

12xx

n n
S

−
= . (5) 

Substituting (4) and (5) into Equation (3) and doing some additional algebraic 

simplification gives 

 

( )
2

. . 2

3 2. . prediction errorp e Y
n ns d

n n
σ σ + +

= =
−

. 

 

Now, this is just a function of Yσ ,and n where Yσ  is known or estimated.  In the 

above equation, the square root part is called the “sigma multiple”, and it has been plotted 

against various values of n in Figure 2. 
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Figure 2.   “Sigma multiple” for various n values 

 
 

What this plot shows is that if optimal ns in the regression fall between about 30 

and 60, then the standard deviation of the prediction error should be roughly about 1.07 

to 1.03 times the size of the standard deviation used in the data simulation. 

Assuming it is important to detect an increase in mean disease incidence of one 

standard deviation of the prediction error set . . /2p ek σ=  in the CUSUM.  Thus, for 

adaptive regression models with sliding baselines between 30 and 60, the reference value 

was set 

. . /2 1.05 /2 /2.p e Y Yk σ σ σ= ≈ ≈  

For large counts, the reference value was thus set /2.k σ=   For small counts, 

because of the lognormal random daily variation, /2Yk σ=  where  

( ) ( ) 1/22 2exp( 1) exp 2Yσ σ µ σ⎡ ⎤= − +⎣ ⎦ . 

When n = 7 – i.e., when the length of the adaptive regression sliding baseline was 

matched to the amount of data as used in the C1, C2, and C3 methods – Figure 2 shows 

that 0.65k σ= for the large counts and 0.65 Yk σ= for the small counts.  In particular, 
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when the random noise is generated by )7.0,0.1(LN , k = 2.8/2 = 1.4, and when the 

random noise is generated by )5.0,0.1(LN , k = 1.6/2 = 0.8. 

3. Choosing h 

A threshold for each method needed to be chosen in some way. While a low 

threshold would allow for faster detection of an outbreak, it would also increase the 

number of false alarms occurring. As is common practice, the non-outbreak ATFS was 

set to 100 days for this work, and the h (threshold) was empirically determined for each 

method.  This was done in order to ensure equal performance among all the procedures in 

the absence of an outbreak.  An ATFS of 100 means that for an in-control mean, a 

method using the predetermined h will signal an initial false alarm one out of every 

hundred days on average.  It should be noted that the thresholds for the C1, C2, and C3 

methods were chosen empirically in order to generate an ATFS of 100 days; this was 

different from the literature, where the C1, C2, and C3 had thresholds of 3, 3, and 2, 

respectively.  

It is important to note that with the use of a 100 day ATFS, one result could be an 

excessive number of false alarms if one or more of these methods were being 

simultaneously run on the data from, say, 1000 hospitals.  Specifically, with an ATFS of 

100 days, one would expect roughly one false signal every 100 days for each hospital. 

With 1000 hospitals this would result in, on average, about 10 false alarms each day or 

3650 false alarms over the course of a year. Then, if there was one real attack in the year, 

how would this one attack be distinguished from all the false signals? This is essentially 

the situation the EARS or BioSense systems are in when they use the fixed thresholds, 

since for the C1 and C2 our empirical thresholds were close to the fixed values used in 

practice by EARS.  

Since longer ATFS periods would have taken significantly longer to simulate, the 

100 day ATFS was chosen for computational convenience, where the goal was to assess 

the relative performance of the methods.  It is assumed that this relative ranking would 

not change with changes in the ATFS.  However, if these methods were implemented in 

simultaneous monitoring schemes, the thresholds could and should be adjusted 
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(increased) in order to appropriately balance between expected number of false alarms 

and the probability of detecting an actual attack.   

Choosing the value for h was a simple procedure via simulation. For this work, it 

was done by first choosing an h value for a certain method, and then running the method 

on simulated data with no outbreak, using the h as the alarm threshold. The number of 

days the method ran without an alarm for each run was recorded and the average of those 

was calculated. If the ATFS was not very close to 100 days, the h was adjusted and the 

method rerun multiple times once again. This was repeated until the ATFS approached 

100, and the standard error of the ATFS was less than 1.0. The h values for each of the 

methods for all of the scenarios are shown in Table 5. 

 

Case Scen.
Count 
Size

DoW 
effect? β A µ σ Size Value

7 day 
CUSUM

"optimal" 
CUSUM

56 day 
CUSUM C1 C2 C3

"optimal" 
CUSUM n 

(days)
1 1 large no 90 80 0 30 small 9.0 86.9 88.8 88.3 2.98 2.89 3.55 30
1 2 large no 90 80 0 30 med 22.5 86.9 88.8 88.3 2.98 2.89 3.55 30
1 3 large no 90 80 0 30 large 45.0 86.9 88.8 88.3 2.98 2.89 3.55 30
2 4 large no 90 80 0 10 small 9.0 31 33 39 2.71 2.63 3.4 15
2 5 large no 90 80 0 10 med 22.5 31 33 39 2.71 2.63 3.4 15
2 6 large no 90 80 0 10 large 45.0 31 33 39 2.71 2.63 3.4 15
3 7 large no 90 20 0 30 small 9.0 94.4 94.2 92.9 2.74 2.7 2.97 40
3 8 large no 90 20 0 30 med 22.5 94.4 94.2 92.9 2.74 2.7 2.97 40
3 9 large no 90 20 0 30 large 45.0 94.4 94.2 92.9 2.74 2.7 2.97 40
4 10 large no 90 20 0 10 small 9.0 31.6 32 31.7 2.735 2.685 3.01 35
4 11 large no 90 20 0 10 med 22.5 31.6 32 31.7 2.735 2.685 3.01 35
4 12 large no 90 20 0 10 large 45.0 31.6 32 31.7 2.735 2.685 3.01 35
5 13 large no 90 0 0 30 small 9.0 94.9 94 93 2.75 2.7 2.97 45
5 14 large no 90 0 0 30 med 22.5 94.9 94 93 2.75 2.7 2.97 45
5 15 large no 90 0 0 30 large 45.0 94.9 94 93 2.75 2.7 2.97 45
6 16 large no 90 0 0 10 small 9.0 31.7 31.8 31 2.745 2.7 2.967 35
6 17 large no 90 0 0 10 med 22.5 31.7 31.8 31 2.745 2.7 2.967 35
6 18 large no 90 0 0 10 large 45.0 31.7 31.8 31 2.745 2.7 2.967 35
7 19 small no 0 6 1.0 0.7 small 2.0 9.2 10.2 10.4 8.2 7.42 18.15 30
7 20 small no 0 6 1.0 0.7 med 4.0 9.2 10.2 10.4 8.2 7.42 18.15 30
7 21 small no 0 6 1.0 0.7 large 8.0 9.2 10.2 10.4 8.2 7.42 18.15 30
7 22 small no 0 6 1.0 0.7 X-large 16.0 9.2 10.2 10.4 8.2 7.42 18.15 30
8 23 small no 0 6 1.0 0.5 small 1.0 5.2 5.63 6 6.52 6.1 18.2 15
8 24 small no 0 6 1.0 0.5 med 2.0 5.2 5.63 6 6.52 6.1 18.2 15
8 25 small no 0 6 1.0 0.5 large 4.0 5.2 5.63 6 6.52 6.1 18.2 15
8 26 small no 0 6 1.0 0.5 X-large 8.0 5.2 5.63 6 6.52 6.1 18.2 15
7 27 small yes 0 6 1.0 0.7 small 2.0 n/a 10.8 10.8 7.7 7.3 15.5 56
7 28 small yes 0 6 1.0 0.7 med 4.0 n/a 10.8 10.8 7.7 7.3 15.5 56
7 29 small yes 0 6 1.0 0.7 large 8.0 n/a 10.8 10.8 7.7 7.3 15.5 56
7 30 small yes 0 6 1.0 0.7 X-large 16.0 n/a 10.8 10.8 7.7 7.3 15.5 56
2 31 large yes 90 80 0 10 small 9.0 n/a 39 41.9 2.7 2.61 3.38 40
2 32 large yes 90 80 0 10 med 22.5 n/a 39 41.9 2.7 2.61 3.38 40
2 33 large yes 90 80 0 10 large 45.0 n/a 39 41.9 2.7 2.61 3.38 40

Parameters Outbreak h  values

 
Table 5.   Summary of input parameters, outbreak parameters, h, and n values. 

 
 
 



 31

V. RESULTS 

This chapter summarizes the results of the simulations, focusing on the large 

count, small count, and day-of-the-week effect results.  See Appendix B for the plots 

from all 33 scenarios, and see Appendix C for all simulation code used.  See Table 5 for a 

full summary of all parameters and input values, including outbreak values. 

In general terms, the simulations were conducted as follows.  A loop was used in 

order to have the program run for a set number of outbreaks.  First, a random start day 

was chosen, and data was generated for a warm-up period of 100 days following the start 

day.  Then, the outbreak was imposed, and the methods analyzed the data in an attempt to 

find an outbreak.  Once an alarm occurred, the data generation terminated and the loop 

restarted. This process continued until the completion of all loops. Given a detection 

within the outbreak duration, the data generation would start again in the above 

description with a random start day.  Given that the outbreak was not detected within its 

duration, the data generation would continue until a false alarm occurred (for 

programming convenience).  Once a false alarm occurred, the data generation terminated 

and the loop restarted.  In the context of statistics collection, the false alarms were kept 

separate from the actual alarms. 

A.  LARGE COUNT BASELINE MEAN 

Although 18 simulation scenarios were run, the results can be largely summarized 

by the six plots in Figure 3, which show the results of using the case 2 parameters for 

scenarios 4, 5, and 6 for small, medium, and large outbreaks, respectively. For all large 

count cases (all with baseline 90), small, medium and large outbreaks were calculated to 

be of magnitude 9, 22.5, and 45, respectively. The upper, left-hand plot shows the 

average time to first signal given a true signal starting with a small outbreak, with the 

middle and lower plots being for medium and large outbreaks, respectively. The right-

hand plots show, in increasing order of outbreak, the fraction of the time a procedure 
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missed detecting the outbreaks.  Each plot evaluates the performance for the C1, C2, C3, 

and CUSUM methods, using the three sliding baseline lengths (n):  7, 15 (the “optimal” 

for case 2), and 56 days.   

The graphs demonstrate that the CUSUM methods – particularly the ones with 

larger n – consistently outperform the three EARS methods studied. The three EARS 

methods performed similarly across all simulations. Of the EARS methods, the C2 

method had the lowest fraction missed on the majority of the simulations, but the C1 was 

typically faster than the C2 and C3 for the ATFS given a true signal. The C3 method’s 

performance varied, but it was typically outperformed by the C1 in the ATFS given a true 

signal and the C2 in the fraction missed. In the few scenarios where the C3 did 

outperform the C1 or C2, the difference in performance between the C3 and C1 or C3 

and C2 was small.  

While the EARS methods and the CUSUM with a 7 day sliding baseline tended to 

have slightly shorter ATFS given a true signal than the other two CUSUMs, this came at 

the expense of missing significantly more outbreaks than the CUSUMs with either a 15 

(“optimal” n for this case) or 56 day sliding baseline. Recall that the metric used to 

choose the “optimal” n was visual inspection of the smallest n that achieved most of the 

reduction in the average squared residuals (see Chapter IV).   There was a tradeoff in 

determining which method was better because, for the simulated data, the CUSUM with 

56 day sliding baseline consistently had the lowest fraction missed but did not necessarily 

have the shortest ATFS given a true signal. It also had the largest n value, which might be 

considered undesirable in some situations. This difference in performance is evident in all 

outbreak magnitudes but is most evident with the larger magnitude outbreaks. For the 

case 2 scenarios considered here, the CUSUM with a 56 day sliding baseline is preferred, 

because it consistently had the lowest fraction missed, with an ATFS given a true signal 

in the 2-6.5 day range.  

However, other methods, given they detected the outbreak within its duration, 

often had slightly lower ATFS given a true signal, and these ATFS values usually only 

differed by somewhere around 0-2 days, but usually towards the lower end of that range 

for outbreaks of up to nine day duration. This indicates that, were the simulated data real, 
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other methods might slightly outperform the CUSUM with a 56 day sliding baseline in 

terms of speed of detection for the times that they detected within the outbreak’s 

duration. While it is true that a tradeoff exists here, these simulations are simply 

representations of actual data in terms of actual counts, outbreaks, and different variations 

(annual cycle, standard deviation, etc.). Therefore, the specific value of the ATFS given a 

true signal should only be used to determine the relative performance of the methods – it 

should not be used to conclude that the real-life ATFS given a true signal would be what 

is shown in the plots.  

Also, in Figure 3 the C1 and CUSUM with a 7 day sliding baseline suffer the 

most from being contaminated by the outbreak data in the largest magnitude outbreak 

scenarios.  That is, in the lower, right-hand plot the fraction missed by these two 

procedures increases for longer duration outbreaks.  This is because, if these procedures 

fail to detect the outbreaks early on, they begin to incorporate the outbreak data into their 

calculations (either the moving average for the C1 or the adaptive regression predictions 

for the CUSUM). As outbreak data is incorporated into the calculations, it becomes 

increasingly difficult to distinguish the outbreak from the baseline mean of disease 

incidence.  In comparison, the two day lag in the C2 procedure essentially delays this 

problem. It can be seen in scenario 6 of Figure 3 that the C2 fraction missed increases for 

outbreaks of longer duration. This is also true for the C3, which is a function of the C2 

test statistic.  In spite of the contamination, the relative performance of the EARS 

methods remains unchanged.  
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Figure 3.   Performance of the procedures for case 2 (large count), scenarios 4-6. 

 
 



 35

B.  SMALL COUNT BASELINE MEAN 

When the first entire set of small count scenarios was run, a mistake was made 

that set the k value to a lower value than shown in the calculations used to set k.  

Although lower, the threshold values were set to have the non-outbreak ATFS equal to 

100, and the relative performance of each algorithm did not change.  As with the large 

counts it could clearly be seen in the plots that varying amplitude made no discernable 

difference in the results. That is, that the amplitude simply was not a factor in 

determining which methods were superior to the others, because the adaptive regression 

did a sufficient job of removing the sinusoidal effects in the data stream for the 

CUSUMs. Due to the error discovered, the small count scenario simulations were run 

again with the correct desired k value, but this time they were conducted by holding the 

amplitude constant at a value of 6 (as mentioned briefly in Chapter II), which reduced the 

total number of simulation scenarios. The four outbreak magnitudes for the small count 

cases were small, medium, large, and extra large; these were calculated by taking 10%, 

25%, 50%, and 100% of the sum of the expected value and three standard deviations, 

respectively.  

Figure 4 and Figure 5 show the results of using the case 7 parameters for 

scenarios 19, 20, 21, and 22; these plots are a good representation of all small, medium, 

large, and extra large magnitude outbreaks scenarios for the small count cases, where the 

outbreaks were of size 2, 4, 8, and 16, respectively. Comparing Figure 3 (large count) to 

Figures 4 and 5 (small count), one can see their overall similarity.  The CUSUMs with 

the longer sliding baselines are again the best performing procedures (where the 

“optimal” sliding baseline in this scenario was 30 days), and the EARS methods 

performed relatively similarly. Again, the C1 generally has the lowest ATFS given a true 

signal and, of the EARS methods, the C2 generally has the lowest fraction missed. 

Although the C1 does have the shortest ATFS given a true signal, it completely misses 

about 85 to 90 percent of the outbreaks.  In comparison, the CUSUMs using either a 30 

or 56 day sliding baseline catch virtually all of the outbreaks. For these CUSUMs, the 

ATFS given a true signal was about two days for a three day outbreak, and the ATFS 

given a true signal was about four days for a 15 day outbreak. 
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Figure 4.   Performance of the procedures for case 7 (small count) for scenarios 

19-20.  
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Figure 5.   Performance of the procedures for case 7 (small count) for scenarios 

21-22. 
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C.  DAY OF THE WEEK EFFECTS 

Lastly, seven scenarios that included day-of-the-week effects were run by 

revisiting large count case 2 and small count case 7, this time including the day-of-the-

week effect in the baseline disease incidence. Figure 6 shows the results of these 

simulations for large count case 2 (scenarios 31-33) parameters, and Figure 7 and Figure 

8 show the results of these simulations for small count case 7 (scenarios 27-30) 

parameters. Outbreaks for large count were of size 9, 22.5, and 45, and outbreaks for 

small count were of size 2, 4, 8, and 16, defined as stated earlier.  

It should be noted that these plots do not include a CUSUM with a 7-day sliding 

baseline since seven data points are insufficient to estimate the eight parameters in the 

adaptive regression (slope, intercept, and six say-of-the-week indicators). The results 

with the day-of-the-week effect included were basically the same as in the large and 

small count cases that did not include it. Once again, the CUSUMs based on the adaptive 

regression residuals clearly outperform the EARS methods.  
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Figure 6.   Performance of the procedures for case 2 (large count) for scenarios 

31-33  with day-of-the-week effects included. 
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Figure 7.   Performance of the procedures for case 7 (small count) for scenarios 

27-28 with day-of-the-week effects included.  
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Figure 8.   Performance of the procedures for case 7 (small count) for scenarios 

29-30 with day-of-the-week effects included.  
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VI. CONCLUSIONS AND RECOMMENDATIONS 

A clear conclusion resulting from evaluating the EARS methods versus CUSUM 

methods applied to the residuals of adaptive regression is that the CUSUM methods with 

longer sliding baselines perform significantly better in all the scenarios evaluated. These 

scenarios were chosen to imitate the major features of syndromic surveillance data over a 

wide variety of conditions.  In particular, the EARS methods failed to catch a significant 

fraction of outbreaks across a wide variety of background disease incident patterns (large 

and small daily counts; large, small, and no seasonal cycles; large and small random daily 

fluctuations; and with and without day-of-the-week effects) and a variety of outbreak 

magnitudes and durations.  Overall, the CUSUM methods, particularly the one that uses 

the 8-week (56 day) sliding baseline, outperformed the EARS methods. Therefore, 

standard syndromic surveillance systems using the EARS methods would benefit from 

replacing the EARS methods with a CUSUM method, setting the CUSUM thresholds in a 

similar fashion as done in this research in order to minimize the false alarm burden as 

much as possible.   

 



 44

THIS PAGE INTENTIONALLY LEFT BLANK 



 45

LIST OF REFERENCES 

Brillman, J.C., Burr, T., Forslund, D., Joyce, E., Picard, R., and E. Umland (2005).  
 “Modeling Emergency Department Visit Patterns for Infectious Disease  
 Complaints: Results and Application to Disease Surveillance,” BMC Medical  
 Informatics and Decision Making, 5. 
 
Burkom, H.S., S.P. Murphy, and G. Shmueli (2006).  “Automated Time Series  
 Forecasting for Biosurveillance,” Statistics in Medicine, accepted (available at  
 http://www3.interscience.wiley.com/cgi-bin/abstract/114131913/). June 2007. 
 
Farrington, C.P., Andrews, N.J., Beale, A.D., and M.A. Catchpole (1996).  A Statistical  
 Algorithm for the Early Detection of Outbreaks of Infectious Disease, Journal of  
 the Royal Statistical Society, Series A (Statistics in Society), 159, 547-563. 
 
Fricker, R.D., Jr. (2007a).  Syndromic Surveillance, Encyclopedia of Quantitative Risk  
 Assessment (to appear). 
 
Fricker, R.D., Jr., (2007b).  Directionally Sensitive Multivariate Statistical Process 

Control Methods with Application to Syndromic Surveillance, Advances in 
Disease Surveillance, www.isdsjournal.org, 3:1. June 2007. 

 
Fricker, R.D., Jr., and H. Rolka (2006).  Protecting Against Biological Terrorism: 

Statistical Issues in Electronic Biosurveillance, Chance, 91, 4-13. 
 
Hawkins, D.M. and D.H. Olwell (1998). Cumulative Sum Charts and Charting for  
 Quality Improvement, Springer. 
 
Hutwagner, L., Thompson, W., Seeman, G.M., and Treadwell, T (2003). “The  
 Bioterrorism Preparedness and Response Early Aberration Reporting System  
 (EARS),” Journal of Urban Health: Bulletin of the New York Academy of  
 Medicine, 80, 89i-96i. 
 
Lotze, T., S.P. Murphy, and G. Shmueli (2006). Preparing Biosurveillance Data for  
 Classic Monitoring (draft), in submission to Advances in Disease Surveillance. 
 
Montgomery, D.C., and E.A. Peck (1992). Introduction to Linear Regression Analysis,  
 2nd ed., Wiley. 
 
Montgomery, D.C. (2001). Introduction to Statistical Quality Control, 4th edition, John  
 Wiley & Sons, New York.  
 
 
 



 46

Reis, B.Y., and K.D. Mandl (2003). “Time Series Modeling for Syndromic Surveillance,”  
 BMC Medical Informatics for Decision Making, 3. 
 
Shmueli, G. (2006). “Statistical Challenges in Modern Biosurveillance,” Technometrics  
 (in submission), draft dated September 18, 2006. 
 
Sosin, Daniel M. (2003). Syndromic Surveillance:  The Case for Skillful Investment  
 View, Biosecurity & Bioterrorism, 1(4), Mary Ann Liebert, Inc., 247-253. 
 
Stoto, M.A., Fricker, Jr., R.D., Jain, A., Diamond, A., Davies-Cole, J.O., Glymph, C., 

Kidane, G., Lum, G., Jones, L., Dehan, K., and C. Yuan (2006). Evaluating 
Statistical Methods for Syndromic Surveillance, in Statistical Methods in 
Counterterrorism: Game Theory, Modeling, Syndromic Surveillance, and 
Biometric Authentication, A. Wilson, G. Wilson, and D. Olwell, eds., New York: 
Springer. 

 
Zhu, Y., Wang, W., Atrubin, D., and Y. Wu (2005).  Initial Evaluation of the Early 

Aberration Reporting Sysytem --- Florida, Morbidity and Mortality Weekly 
Report (Supplement), Centers for Disease Control and Prevention, 54, pp. 123-
130, August 26, 2005. 

 
 

 
 
 
 
 
 
 
 



 47

APPENDIX A: “OPTIMAL” n PLOTS 
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Optimal n Plots with the Day-of-the-Week-Effect 
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APPENDIX B: COMPARION RESULTS PLOTS 
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APPENDIX C: MATLAB SIMULATION CODE 

 
Optimal n Code 

 
clear 
clc 
%INITIALIZE VALUES 
numYears =30; 
numSimDays = 365*numYears; % number of days of data to create 
lookBack(1) = 0; % number days to regress over 
numWeeks = 20; % maximum number of weeks to regress over (n increases by 
7 up to 7*numWeeks) 
baseline = 0; 
amplitude = 6; 
sigma = 0.7; 
sigmaZ=2.8; 
  
  
% Steadily increase # of days to regress over 
for (i = 2:1:numWeeks) 
    
lookBack(i) = lookBack(i-1) + 7;  
  
% X matrices for regressions; First Column: ones, Second Column: day # 
matX1 = [ ones(lookBack(i),1) (1:1:lookBack(i))' ];  %linear model 
matX2 = [ ones(lookBack(i),1) (1:1:lookBack(i))' ((1:1:lookBack(i)).^2)' 
]; %model with square term 
  
% DATA SIMULATION------------------------------  
for (hospCountsDay = 1:1:numSimDays)  
     
    %day effect: Monday=1 through Sunday=7 (in mod calcs) 
    if (mod(hospCountsDay,7)+1==1) 
        if (sigma>1) dayeffect= (0.1)*sigma; 
        else dayeffect= (0.1)*sigmaZ; 
        end 
    elseif (mod(hospCountsDay,7)+1==2)  
        if (sigma>1) dayeffect= (0.2)*sigma; 
        else dayeffect= (0.2)*sigmaZ; 
        end 
    elseif (mod(hospCountsDay,7)+1==3)  
        if (sigma>1) dayeffect= (0.3)*sigma; 
        else dayeffect= (0.3)*sigmaZ; 
        end 
    elseif (mod(hospCountsDay,7)+1==4)  
        if (sigma>1) dayeffect= (0.2)*sigma; 
        else dayeffect= (0.2)*sigmaZ; 
        end 
    elseif (mod(hospCountsDay,7)+1==5)  
        if (sigma>1) dayeffect= (0.0)*sigma; 
        else dayeffect= (0.0)*sigmaZ; 
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        end 
    elseif (mod(hospCountsDay,7)+1==6)  
        if (sigma>1) dayeffect= (-0.3)*sigma; 
        else dayeffect= (-0.3)*sigmaZ; 
        end 
    elseif (mod(hospCountsDay,7)+1==7)  
        if (sigma>1) dayeffect= (-0.5)*sigma; 
        else dayeffect= (-0.5)*sigmaZ; 
        end 
    end 
  
meanie=amplitude*(sin(2*pi*hospCountsDay/365))+ baseline;  % This is the 
seasonal mean of the process 
%rand_var=randn*sigma;  % For large counts 
rand_var=lognrnd(1.0,sigma);  % For small counts 
  
hospCounts(hospCountsDay)=max(0,ceil(meanie+dayeffect+rand_var)); % an 
observation on day "hospCountsDay" 
  
% If enough data is available for this "lookBack" number of regress 
days, regress 
if (hospCountsDay >= (lookBack(i)+1))  
     
% Vector "countLookBack" holds the previous "lookBack" # of days of 
count values 
 countLookBack = [ hospCounts((hospCountsDay-
lookBack(i)):1:(hospCountsDay-1))]; 
  
% DAILY REGRESSION CALCULATION---------------- 
% Regress from day hospCountsDay back "lookBack" number of days (use a 
lag later?) 
  
b = regress(countLookBack', matX1); % linear model; b = regress(X,Y) 
where  X = days, Y = values(counts) 
a = matX2\countLookBack'; % squared term model 
  
% PREDICT "TOMORROW'S" COUNT------------------- 
tomorrowCount = [1 (lookBack(i)+1)]; % 1 for intercept, (lookBack + 1) 
for tomorrow's day # 
predCount(hospCountsDay) = tomorrowCount*b; % linear model 
  
tomorrowCount2 = [1 (lookBack(i)+1) (lookBack(i) + 1).^2]; % 1 for 
intercept, (lookBack + 1) for tomorrow 
predCount2(hospCountsDay) = tomorrowCount2*a; % squared term model 
  
% Calculate residual values ( resid = predicted - actual) 
residual(hospCountsDay) = hospCounts(hospCountsDay ) - 
predCount(hospCountsDay); % linear model 
sqdResidual(hospCountsDay) = residual(hospCountsDay)^2; 
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residual2(hospCountsDay) = hospCounts(hospCountsDay ) - 
predCount2(hospCountsDay); % squared term model 
sqdResidual2(hospCountsDay) = residual2(hospCountsDay)^2; 
  
end % end if-statement 
end % end hospCountsDay's for-loop 
  
avgSqdResidual(i) = mean(sqdResidual((lookBack(i)+1):numSimDays)); 
%/(numSimDays - lookBack + 1) LINEAR MDL 
avgSqdResidual2(i) = mean(sqdResidual2((lookBack(i)+1):numSimDays)); 
%/(numSimDays - lookBack + 1) SQUARED MDL 
  
end % end i's for-loop 
%  
%Plot n vs avgSqdResidual 
    plot(lookBack(2:numWeeks), avgSqdResidual(2:numWeeks), 'b') 
    xlabel('# regress days'); 
    ylabel('avgSqdResidual'); 
       
hold on   
     
% %Plot n vs avgSqdResidual2 (squared case) 
      plot(lookBack(2:numWeeks), avgSqdResidual2(2:numWeeks), 'g') 
%     xlabel('# regress days'); 
%     ylabel('avgSqdResidual'); 
      legend('Linear', 'Square'); 
%  %Plot hospital counts 
%subplot(1,2,2), plot((1:1:1000), hospCounts(1:1000)) 
%     xlabel('day'); 
%     ylabel('count'); 
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Optimal h Code 
 

clear 
clc 
% want h of each scenario to give ATFS of 100, with SD of about 1.0, 
then fix these. 
% What are appropriate magnitudes and slopes of outbreaks 
% for a given scenario (with n), and optimal h, plot ATFS vs slope of 
% outbreak for CUSUM, C1, C2, C3 to compare them all 
numLoops = 1000; 
baseline = 90; 
amplitude = 80; 
sigma = 10; 
sigmaZ = 2.8; 
k = sigma/2;  % for large-count CUSUM  
%k = sigmaZ/2;  % for small-count CUSUM  
%k = sigma*0.65;  % for large-count CUSUM w/ lookBack=7 
%k = sigmaZ*0.65;  % for small-count CUSUM w/ lookBack=7 
h = 41.9; % (cusum) 
cusum = 0; 
runLengthCounter = 0; 
TFS(1) = 0 ; 
alarmCount = 0; 
lookBack = 56; 
  
% START CUSUM METHOD__________________________________________ 
for(dummy=1:1:numLoops) 
randStartDay = ceil(rand*365); 
  
for (j = 1:1:(lookBack + 1)) 
meanie=amplitude*(sin(2*pi*(j+randStartDay)/365))+ baseline;  % This is 
the seasonal mean of the process 
rand_var=randn*sigma;  % For large counts 
%rand_var=lognrnd(1.0,sigma);  % For small counts 
     
    %day effect: Monday=1 through Sunday=7 (in mod calcs) 
    if (mod(j,7)+1==1) 
        if (sigma>1) dayeffect= (0.1)*sigma; 
        else dayeffect= (0.1)*sigmaZ; 
        end 
    elseif (mod(j,7)+1==2)  
        if (sigma>1) dayeffect= (0.2)*sigma; 
        else dayeffect= (0.2)*sigmaZ; 
        end 
    elseif (mod(j,7)+1==3)  
        if (sigma>1) dayeffect= (0.3)*sigma; 
        else dayeffect= (0.3)*sigmaZ; 
        end 
    elseif (mod(j,7)+1==4)  
        if (sigma>1) dayeffect= (0.2)*sigma; 
        else dayeffect= (0.2)*sigmaZ; 
        end 
    elseif (mod(j,7)+1==5)  
        if (sigma>1) dayeffect= (0.0)*sigma; 
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        else dayeffect= (0.0)*sigmaZ; 
        end 
    elseif (mod(j,7)+1==6)  
        if (sigma>1) dayeffect= (-0.3)*sigma; 
        else dayeffect= (-0.3)*sigmaZ; 
        end 
    elseif (mod(j,7)+1==7)  
        if (sigma>1) dayeffect= (-0.5)*sigma; 
        else dayeffect= (-0.5)*sigmaZ; 
        end 
    end 
  
hospCounts(j)=max(0,ceil(meanie+dayeffect+rand_var)); % an observation 
on day "hospCountsDay" 
end 
  
hospCountsDay = lookBack + 2; 
  
while (cusum < h) 
     
    %day effect: Monday=1 through Sunday=7 (in mod calcs) 
    if (mod(hospCountsDay,7)+1==1) 
        if (sigma>1) dayeffect= (0.1)*sigma; 
        else dayeffect= (0.1)*sigmaZ; 
        end 
    elseif (mod(hospCountsDay,7)+1==2)  
        if (sigma>1) dayeffect= (0.2)*sigma; 
        else dayeffect= (0.2)*sigmaZ; 
        end 
    elseif (mod(hospCountsDay,7)+1==3)  
        if (sigma>1) dayeffect= (0.3)*sigma; 
        else dayeffect= (0.3)*sigmaZ; 
        end 
    elseif (mod(hospCountsDay,7)+1==4)  
        if (sigma>1) dayeffect= (0.2)*sigma; 
        else dayeffect= (0.2)*sigmaZ; 
        end 
    elseif (mod(hospCountsDay,7)+1==5)  
        if (sigma>1) dayeffect= (0.0)*sigma; 
        else dayeffect= (0.0)*sigmaZ; 
        end 
    elseif (mod(hospCountsDay,7)+1==6)  
        if (sigma>1) dayeffect= (-0.3)*sigma; 
        else dayeffect= (-0.3)*sigmaZ; 
        end 
    elseif (mod(hospCountsDay,7)+1==7)  
        if (sigma>1) dayeffect= (-0.5)*sigma; 
        else dayeffect= (-0.5)*sigmaZ; 
        end 
    end 
  
meanie=amplitude*(sin(2*pi*(randStartDay+hospCountsDay)/365))+ baseline;   
rand_var=randn*sigma;  % For large counts   
%rand_var=lognrnd(1.0,sigma);  % For small counts 
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hospCounts(hospCountsDay)=max(0,ceil(meanie+dayeffect+rand_var));  
  
matX1 = [ ones(lookBack,1) (1:1:lookBack)' ]; 
matX2 = zeros(lookBack,6); 
for i=1:lookBack; 
    columnX2=mod(hospCountsDay-i,7)+1; 
    if(columnX2<7) 
        matX2(lookBack+1-i,columnX2)=1; 
    end; 
end; 
matX =[matX1 matX2]; 
  
countLookBack = [ hospCounts((hospCountsDay-lookBack):1:(hospCountsDay-
1))]; 
b = regress(countLookBack', matX);  
  
daysInd=[0, 0, 0, 0, 0, 0]; 
columnInd=mod(hospCountsDay,7)+1; 
if(columnInd<7) 
    daysInd(columnInd)=1; 
end; 
  
tomorrowCount = [1 (lookBack+1) daysInd]; % 1 for intercept, (lookBack + 
1) for tomorrow's day # 
predCount(hospCountsDay) = tomorrowCount*b; %it's like you're predicting 
the mean of the process 
residual(hospCountsDay) = hospCounts(hospCountsDay ) - 
predCount(hospCountsDay); 
  
cusum = max(0, (residual(hospCountsDay) - k + cusum)); 
  
runLengthCounter = runLengthCounter + 1; 
hospCountsDay = hospCountsDay + 1; 
end % end while (cusum < h) loop 
  
alarmCount = alarmCount + 1; 
TFS(alarmCount) = runLengthCounter; % after "alarm", you have a new TFS 
value 
runLengthCounter = 0; % after "alarm", reset runLengthCounter 
cusum = 0; % after "alarm", reset runLengthCounter 
  
end % end i's for-loop 
averageTFS = mean(TFS) 
stdErrTFS = std(TFS)/(numLoops^0.5) 
  
%   
% START C1 METHOD__________________________________________ 
alarmCountC1 = 0; 
runLengthCounterC1 = 0;  
TFSc1(1)=0; 
c1h = 2.7; 
c1Statistic = 0; 
sdMovingAvg=100; 
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for (dummy = 1:1:numLoops) 
randStartDay = ceil(rand*365); 
  
for (j = 1:1:7) 
meanie=amplitude*(sin(2*pi*(j+randStartDay)/365))+ baseline;  % This is 
the seasonal mean of the process 
rand_var=randn*sigma;  % For large counts 
%rand_var=lognrnd(1.0,sigma);  % For small counts 
     
    %day effect: Monday=1 through Sunday=7  
    if (j==1) 
        if (sigma>1) dayeffect= (0.1)*sigma; 
        else dayeffect= (0.1)*sigmaZ; 
        end 
    elseif (j==2)  
        if (sigma>1) dayeffect= (0.2)*sigma; 
        else dayeffect= (0.2)*sigmaZ; 
        end 
    elseif (j==3)  
        if (sigma>1) dayeffect= (0.3)*sigma; 
        else dayeffect= (0.3)*sigmaZ; 
        end 
    elseif (j==4)  
        if (sigma>1) dayeffect= (0.2)*sigma; 
        else dayeffect= (0.2)*sigmaZ; 
        end 
    elseif (j==5)  
        if (sigma>1) dayeffect= (0.0)*sigma; 
        else dayeffect= (0.0)*sigmaZ; 
        end 
    elseif (j==6)  
        if (sigma>1) dayeffect= (-0.3)*sigma; 
        else dayeffect= (-0.3)*sigmaZ; 
        end 
    elseif (j==7)  
        if (sigma>1) dayeffect= (-0.5)*sigma; 
        else dayeffect= (-0.5)*sigmaZ; 
        end 
    end 
  
hospCounts(j)=max(0,ceil(meanie+rand_var+dayeffect)); % an observation 
on day "hospCountsDay" 
end 
  
hospCountsDay = 8; 
  
while (c1Statistic < c1h)  
     
    %day effect: Monday=1 through Sunday=7 (in mod calcs) 
    if (mod(hospCountsDay,7)+1==1) 
        if (sigma>1) dayeffect= (0.1)*sigma; 
        else dayeffect= (0.1)*sigmaZ; 
        end 
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    elseif (mod(hospCountsDay,7)+1==2)  
        if (sigma>1) dayeffect= (0.2)*sigma; 
        else dayeffect= (0.2)*sigmaZ; 
        end 
    elseif (mod(hospCountsDay,7)+1==3)  
        if (sigma>1) dayeffect= (0.3)*sigma; 
        else dayeffect= (0.3)*sigmaZ; 
        end 
    elseif (mod(hospCountsDay,7)+1==4)  
        if (sigma>1) dayeffect= (0.2)*sigma; 
        else dayeffect= (0.2)*sigmaZ; 
        end 
    elseif (mod(hospCountsDay,7)+1==5)  
        if (sigma>1) dayeffect= (0.0)*sigma; 
        else dayeffect= (0.0)*sigmaZ; 
        end 
    elseif (mod(hospCountsDay,7)+1==6)  
        if (sigma>1) dayeffect= (-0.3)*sigma; 
        else dayeffect= (-0.3)*sigmaZ; 
        end 
    elseif (mod(hospCountsDay,7)+1==7)  
        if (sigma>1) dayeffect= (-0.5)*sigma; 
        else dayeffect= (-0.5)*sigmaZ; 
        end 
    end 
     
meanie=amplitude*(sin(2*pi*(randStartDay+hospCountsDay)/365))+ baseline;   
rand_var=randn*sigma;  % For large counts   
%rand_var=lognrnd(1.0,sigma);  % For small counts 
hospCounts(hospCountsDay)=max(0,ceil(meanie+dayeffect+rand_var));  
  
movingAvg(hospCountsDay) = (hospCounts(hospCountsDay-7) + 
hospCounts(hospCountsDay-6) + hospCounts(hospCountsDay-5) + 
hospCounts(hospCountsDay-4) + hospCounts(hospCountsDay-3) + 
hospCounts(hospCountsDay-2) + hospCounts(hospCountsDay-1))/7; 
  
if (length(movingAvg) >= 14) %need 7 (nonzero) values for an average 
if (sdMovingAvg>0) 
    oldsdMovingAvg=sdMovingAvg; 
end 
    sdMovingAvg = ((((hospCounts(hospCountsDay-7) - 
movingAvg(hospCountsDay-7))^2) + ((hospCounts(hospCountsDay-6) - 
movingAvg(hospCountsDay-6))^2) + ((hospCounts(hospCountsDay-5) - 
movingAvg(hospCountsDay-5))^2) + ((hospCounts(hospCountsDay-4) - 
movingAvg(hospCountsDay-4))^2) + ((hospCounts(hospCountsDay-3) - 
movingAvg(hospCountsDay-3))^2) + ((hospCounts(hospCountsDay-2) - 
movingAvg(hospCountsDay-2))^2) + ((hospCounts(hospCountsDay-1) - 
movingAvg(hospCountsDay-1))^2))/6)^0.5; 
if (sdMovingAvg ==0) 
    sdMovingAvg=oldsdMovingAvg; 
end 
c1Statistic = (hospCounts(hospCountsDay) - 
movingAvg(hospCountsDay))/sdMovingAvg; 
runLengthCounterC1 = runLengthCounterC1 + 1; 
end 
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hospCountsDay = hospCountsDay + 1; 
end % while loop when "alarm" occurs 
  
alarmCountC1 = alarmCountC1 + 1; 
TFSc1(alarmCountC1) = runLengthCounterC1; % after "alarm", you have a 
new TFS value 
runLengthCounterC1 = 0; % after "alvarm", reset runLengthCounter 
c1Statistic = 0; 
  
end % dummy's for loop 
averageTFSc1 = mean(TFSc1)  
stdErrTFSc1 = std(TFSc1)/(numLoops^0.5) 
  
% START C2 METHOD__________________________________________ 
alarmCountC2 = 0; 
runLengthCounterC2 = 0;  
TFSc2(1) = 0; 
c2h = 2.61; 
c2Statistic = 0; 
c2StatTodayMinus2 = 0; 
c2StatTodayMinus1 = 0; 
c2StatToday = 0; 
sdMovingAvg=100; 
  
for (dummy = 1:1:numLoops) 
randStartDay = ceil(rand*365); 
  
for (j = 1:1:9) 
meanie=amplitude*(sin(2*pi*(j+randStartDay)/365))+ baseline;  % This is 
the seasonal mean of the process 
rand_var=randn*sigma;  % For large counts 
%rand_var=lognrnd(1.0,sigma);  % For small counts 
     
    %day effect: Monday=1 through Sunday=7 
    if (j==1) 
        if (sigma>1) dayeffect= (0.1)*sigma; 
        else dayeffect= (0.1)*sigmaZ; 
        end 
    elseif (j==2)  
        if (sigma>1) dayeffect= (0.2)*sigma; 
        else dayeffect= (0.2)*sigmaZ; 
        end 
    elseif (j==3)  
        if (sigma>1) dayeffect= (0.3)*sigma; 
        else dayeffect= (0.3)*sigmaZ; 
        end 
    elseif (j==4)  
        if (sigma>1) dayeffect= (0.2)*sigma; 
        else dayeffect= (0.2)*sigmaZ; 
        end 
    elseif (j==5)  
        if (sigma>1) dayeffect= (0.0)*sigma; 
        else dayeffect= (0.0)*sigmaZ; 
        end 
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    elseif (j==6)  
        if (sigma>1) dayeffect= (-0.3)*sigma; 
        else dayeffect= (-0.3)*sigmaZ; 
        end 
    elseif (j==7)  
        if (sigma>1) dayeffect= (-0.5)*sigma; 
        else dayeffect= (-0.5)*sigmaZ; 
        end 
  elseif (j==8)  
        if (sigma>1) dayeffect= (0.1)*sigma; 
        else dayeffect= (0.1)*sigmaZ; 
        end 
    elseif (j==9)  
        if (sigma>1) dayeffect= (0.2)*sigma; 
        else dayeffect= (0.2)*sigmaZ; 
        end 
  end 
  
hospCounts(j)=max(0,ceil(meanie+dayeffect+rand_var)); % an observation 
on day "hospCountsDay" 
end 
  
hospCountsDay = 10; 
  
    while (c2Statistic < c2h) 
     
    %day effect: Monday=1 through Sunday=7 (in mod calcs) 
    if (mod(hospCountsDay,7)+1==1) 
        if (sigma>1) dayeffect= (0.1)*sigma; 
        else dayeffect= (0.1)*sigmaZ; 
        end 
    elseif (mod(hospCountsDay,7)+1==2)  
        if (sigma>1) dayeffect= (0.2)*sigma; 
        else dayeffect= (0.2)*sigmaZ; 
        end 
    elseif (mod(hospCountsDay,7)+1==3)  
        if (sigma>1) dayeffect= (0.3)*sigma; 
        else dayeffect= (0.3)*sigmaZ; 
        end 
    elseif (mod(hospCountsDay,7)+1==4)  
        if (sigma>1) dayeffect= (0.2)*sigma; 
        else dayeffect= (0.2)*sigmaZ; 
        end 
    elseif (mod(hospCountsDay,7)+1==5)  
        if (sigma>1) dayeffect= (0.0)*sigma; 
        else dayeffect= (0.0)*sigmaZ; 
        end 
    elseif (mod(hospCountsDay,7)+1==6)  
        if (sigma>1) dayeffect= (-0.3)*sigma; 
        else dayeffect= (-0.3)*sigmaZ; 
        end 
    elseif (mod(hospCountsDay,7)+1==7)  
        if (sigma>1) dayeffect= (-0.5)*sigma; 
        else dayeffect= (-0.5)*sigmaZ; 
        end 
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    end 
  
    meanie=amplitude*(sin(2*pi*(randStartDay+hospCountsDay)/365))+ 
baseline;   
    rand_var=randn*sigma;  % For large counts   
    %rand_var=lognrnd(1.0,sigma);  % For small counts 
    hospCounts(hospCountsDay)=max(0,ceil(meanie+dayeffect+rand_var));  
  
    movingAvg(hospCountsDay) = (hospCounts(hospCountsDay-9) + 
hospCounts(hospCountsDay-8) + hospCounts(hospCountsDay-7) + 
hospCounts(hospCountsDay-6) + hospCounts(hospCountsDay-5) + 
hospCounts(hospCountsDay-4) + hospCounts(hospCountsDay-3))/7; 
  
        if (length(movingAvg) >= 16) %need 7 (16-9) days for an average 
            if (sdMovingAvg>0) 
                oldsdMovingAvg=sdMovingAvg; 
            end 
        sdMovingAvg = ((((hospCounts(hospCountsDay-9) - 
movingAvg(hospCountsDay-9))^2) + ((hospCounts(hospCountsDay-8) - 
movingAvg(hospCountsDay-8))^2) + ((hospCounts(hospCountsDay-7) - 
movingAvg(hospCountsDay-7))^2) + ((hospCounts(hospCountsDay-6) - 
movingAvg(hospCountsDay-6))^2) + ((hospCounts(hospCountsDay-5) - 
movingAvg(hospCountsDay-5))^2) + ((hospCounts(hospCountsDay-4) - 
movingAvg(hospCountsDay-4))^2) + ((hospCounts(hospCountsDay-3) - 
movingAvg(hospCountsDay-3))^2))/6)^0.5; 
            if (sdMovingAvg==0) 
                sdMovingAvg=oldsdMovingAvg; 
            end 
  
        c2Statistic = (hospCounts(hospCountsDay) - 
movingAvg(hospCountsDay))/sdMovingAvg; 
        c2StatTodayMinus2 = c2StatTodayMinus1; % values on right are one 
day old right now 
        c2StatTodayMinus1 = c2StatToday; 
        c2StatToday = c2Statistic; 
  
        runLengthCounterC2 = runLengthCounterC2 + 1; 
        end  
    hospCountsDay = hospCountsDay + 1; 
    end % while loop when "alarm" occurs 
  
alarmCountC2 = alarmCountC2 + 1; 
TFSc2(alarmCountC2) = runLengthCounterC2; % after "alarm", you have a 
new TFS value 
runLengthCounterC2 = 0; % after "alarm", reset runLengthCounter 
c2Statistic = 0; 
  
end % dummy's for loop 
averageTFSc2 = mean(TFSc2)  
stdErrTFSc2 = std(TFSc2)/(numLoops^0.5) 
  
  
% START C3 METHOD__________________________________________ 
alarmCountC3 = 0; 
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runLengthCounterC3 = 0; 
TFSc3(1) = 0; 
c3h = 3.38; 
c2Statistic = 0; 
c2StatTodayMinus2 = 0; 
c2StatTodayMinus1 = 0; 
c2StatToday = 0; 
c3Statistic = 0; 
sdMovingAvg=100; 
  
for (dummy = 1:1:numLoops) 
randStartDay = ceil(rand*365); 
  
for (j = 1:1:9) 
meanie=amplitude*(sin(2*pi*(j+randStartDay)/365))+ baseline;  % This is 
the seasonal mean of the process 
rand_var=randn*sigma;  % For large counts 
%rand_var=lognrnd(1.0,sigma);  % For small counts 
     
    %day effect: Monday=1 through Sunday=7  
    if (j==1) 
        if (sigma>1) dayeffect= (0.1)*sigma; 
        else dayeffect= (0.1)*sigmaZ; 
        end 
    elseif (j==2)  
        if (sigma>1) dayeffect= (0.2)*sigma; 
        else dayeffect= (0.2)*sigmaZ; 
        end 
    elseif (j==3)  
        if (sigma>1) dayeffect= (0.3)*sigma; 
        else dayeffect= (0.3)*sigmaZ; 
        end 
    elseif (j==4)  
        if (sigma>1) dayeffect= (0.2)*sigma; 
        else dayeffect= (0.2)*sigmaZ; 
        end 
    elseif (j==5)  
        if (sigma>1) dayeffect= (0.0)*sigma; 
        else dayeffect= (0.0)*sigmaZ; 
        end 
    elseif (j==6)  
        if (sigma>1) dayeffect= (-0.3)*sigma; 
        else dayeffect= (-0.3)*sigmaZ; 
        end 
    elseif (j==7)  
        if (sigma>1) dayeffect= (-0.5)*sigma; 
        else dayeffect= (-0.5)*sigmaZ; 
        end 
  elseif (j==8)  
        if (sigma>1) dayeffect= (0.1)*sigma; 
        else dayeffect= (0.1)*sigmaZ; 
        end 
    elseif (j==9)  
        if (sigma>1) dayeffect= (0.2)*sigma; 
        else dayeffect= (0.2)*sigmaZ; 
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        end 
  end 
  
hospCounts(j)=max(0,ceil(meanie+dayeffect+rand_var)); % an observation 
on day "hospCountsDay" 
end 
  
hospCountsDay = 10; 
  
    while (c3Statistic < c3h) 
     
    %day effect: Monday=1 through Sunday=7 (in mod calcs) 
    if (mod(hospCountsDay,7)+1==1) 
        if (sigma>1) dayeffect= (0.1)*sigma; 
        else dayeffect= (0.1)*sigmaZ; 
        end 
    elseif (mod(hospCountsDay,7)+1==2)  
        if (sigma>1) dayeffect= (0.2)*sigma; 
        else dayeffect= (0.2)*sigmaZ; 
        end 
    elseif (mod(hospCountsDay,7)+1==3)  
        if (sigma>1) dayeffect= (0.3)*sigma; 
        else dayeffect= (0.3)*sigmaZ; 
        end 
    elseif (mod(hospCountsDay,7)+1==4)  
        if (sigma>1) dayeffect= (0.2)*sigma; 
        else dayeffect= (0.2)*sigmaZ; 
        end 
    elseif (mod(hospCountsDay,7)+1==5)  
        if (sigma>1) dayeffect= (0.0)*sigma; 
        else dayeffect= (0.0)*sigmaZ; 
        end 
    elseif (mod(hospCountsDay,7)+1==6)  
        if (sigma>1) dayeffect= (-0.3)*sigma; 
        else dayeffect= (-0.3)*sigmaZ; 
        end 
    elseif (mod(hospCountsDay,7)+1==7)  
        if (sigma>1) dayeffect= (-0.5)*sigma; 
        else dayeffect= (-0.5)*sigmaZ; 
        end 
    end 
     
    meanie=amplitude*(sin(2*pi*(randStartDay+hospCountsDay)/365))+ 
baseline;   
    rand_var=randn*sigma;  % For large counts   
    %rand_var=lognrnd(1.0,sigma);  % For small counts 
    hospCounts(hospCountsDay)=max(0,ceil(meanie+dayeffect+rand_var));  
  
    movingAvg(hospCountsDay) = (hospCounts(hospCountsDay-9) + 
hospCounts(hospCountsDay-8) + hospCounts(hospCountsDay-7) + 
hospCounts(hospCountsDay-6) + hospCounts(hospCountsDay-5) + 
hospCounts(hospCountsDay-4) + hospCounts(hospCountsDay-3))/7; 
  
        if (length(movingAvg) >= 16) %need 7 (16-9) days for an average 
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            if (sdMovingAvg>0) 
                oldsdMovingAvg=sdMovingAvg; 
            end 
        sdMovingAvg = ((((hospCounts(hospCountsDay-9) - 
movingAvg(hospCountsDay-9))^2) + ((hospCounts(hospCountsDay-8) - 
movingAvg(hospCountsDay-8))^2) + ((hospCounts(hospCountsDay-7) - 
movingAvg(hospCountsDay-7))^2) + ((hospCounts(hospCountsDay-6) - 
movingAvg(hospCountsDay-6))^2) + ((hospCounts(hospCountsDay-5) - 
movingAvg(hospCountsDay-5))^2) + ((hospCounts(hospCountsDay-4) - 
movingAvg(hospCountsDay-4))^2) + ((hospCounts(hospCountsDay-3) - 
movingAvg(hospCountsDay-3))^2))/6)^0.5; 
            if (sdMovingAvg==0) 
                sdMovingAvg=oldsdMovingAvg; 
            end 
  
        c2Statistic = (hospCounts(hospCountsDay) - 
movingAvg(hospCountsDay))/sdMovingAvg; 
        c2StatTodayMinus2 = c2StatTodayMinus1; % values on right are one 
day old right now 
        c2StatTodayMinus1 = c2StatToday; 
        c2StatToday = c2Statistic; 
  
            if (length(movingAvg) >= 19) %need 3 C2 values for C3 (and 
all 3 c2Stat values are != 0) 
            c3Statistic = max(0, (c2StatToday) - 1) + max(0, 
(c2StatTodayMinus1) - 1) + max(0, (c2StatTodayMinus2) - 1); 
            runLengthCounterC3 = runLengthCounterC3 + 1; 
  
            end 
%        runLengthCounterC2 = runLengthCounterC2 + 1; 
        end  
    hospCountsDay = hospCountsDay + 1; 
    end % while loop when "alarm" occurs 
  
alarmCountC3 = alarmCountC3 + 1; 
TFSc3(alarmCountC3) = runLengthCounterC3; % after "alarm", you have a 
new TFS value 
runLengthCounterC3 = 0; % after "alarm", reset runLengthCounter 
c3Statistic = 0; 
  
end % dummy's for loop 
averageTFSc3 = mean(TFSc3)  
stdErrTFSc3 = std(TFSc3)/(alarmCountC3^0.5) 
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Comparison Metrics Code 

 
clear 
clc 
  
numLoops = 2000; 
duration = [3 5 7 9 11 13 15]; 
  
% Values that change depending on the scenario under consideration: 
scenarioNumber = 31; %defines a specific 
baseline/amplitude/sigma/outbreak percent combination 
baseline = 90; 
amplitude = 80; 
sigma = 10; 
%magnitude = 2; %for small counts: [SD=0.5 : outbreak = 1, 2, 4] [SE=0.7 
: outbreak = 2, 4, 8] 
magnitude = .1*baseline; % % Large disease outbreak: 10, 25, 50% of 
baseline 
  
MYlookback_optimal = 40; % is # of days that our optimal CUSUM uses to 
look over 
MY_h_optimal = 39; 
MY_h_56day = 41.9; 
MYc1h = 2.7; 
MYc2h = 2.61; 
MYc3h = 3.38; 
  
% START CUSUM METHOD - "Sub-OPTIMAL FOR SCENARIO" day 
lookback__________________________________________ 
k = sigma/2; 
cusum = 0; 
runLengthCounter = 0; 
TFS(1) = 0 ; 
  
lookBack = MYlookback_optimal; % (cusum Optimal) 
h = MY_h_optimal; % (cusum Optimal) 
alarmCount = 0; 
  
for (durationIndex=1:1:7)  
  
for(dummy=1:1:numLoops) 
randStartDay = ceil(rand*365); 
  
for (j = 1:1:(lookBack + 1)) 
meanie=amplitude*(sin(2*pi*(j+randStartDay)/365))+ baseline;  % Seasonal 
mean of the process 
rand_var=randn*sigma;  % For large counts 
%rand_var=lognrnd(1.0,sigma);  % For small counts 
     
    %day effect: Monday=1 through Sunday=7 (in mod calcs) 
    if (mod(j,7)+1==1) 
        if (sigma>1) dayeffect= (0.1)*sigma; 
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        else dayeffect= (0.1)*sigmaZ; 
        end 
    elseif (mod(j,7)+1==2)  
        if (sigma>1) dayeffect= (0.2)*sigma; 
        else dayeffect= (0.2)*sigmaZ; 
        end 
    elseif (mod(j,7)+1==3)  
        if (sigma>1) dayeffect= (0.3)*sigma; 
        else dayeffect= (0.3)*sigmaZ; 
        end 
    elseif (mod(j,7)+1==4)  
        if (sigma>1) dayeffect= (0.2)*sigma; 
        else dayeffect= (0.2)*sigmaZ; 
        end 
    elseif (mod(j,7)+1==5)  
        if (sigma>1) dayeffect= (0.0)*sigma; 
        else dayeffect= (0.0)*sigmaZ; 
        end 
    elseif (mod(j,7)+1==6)  
        if (sigma>1) dayeffect= (-0.3)*sigma; 
        else dayeffect= (-0.3)*sigmaZ; 
        end 
    elseif (mod(j,7)+1==7)  
        if (sigma>1) dayeffect= (-0.5)*sigma; 
        else dayeffect= (-0.5)*sigmaZ; 
        end 
    end 
  
hospCounts(j)=max(0,ceil(meanie+dayeffect+rand_var)); % an observation 
on day "hospCountsDay" 
end 
  
hospCountsDay = lookBack + 2; 
  
while (cusum < h) 
         
    %day effect: Monday=1 through Sunday=7 (in mod calcs) 
    if (mod(hospCountsDay,7)+1==1) 
        if (sigma>1) dayeffect= (0.1)*sigma; 
        else dayeffect= (0.1)*sigmaZ; 
        end 
    elseif (mod(hospCountsDay,7)+1==2)  
        if (sigma>1) dayeffect= (0.2)*sigma; 
        else dayeffect= (0.2)*sigmaZ; 
        end 
    elseif (mod(hospCountsDay,7)+1==3)  
        if (sigma>1) dayeffect= (0.3)*sigma; 
        else dayeffect= (0.3)*sigmaZ; 
        end 
    elseif (mod(hospCountsDay,7)+1==4)  
        if (sigma>1) dayeffect= (0.2)*sigma; 
        else dayeffect= (0.2)*sigmaZ; 
        end 
    elseif (mod(hospCountsDay,7)+1==5)  
        if (sigma>1) dayeffect= (0.0)*sigma; 
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        else dayeffect= (0.0)*sigmaZ; 
        end 
    elseif (mod(hospCountsDay,7)+1==6)  
        if (sigma>1) dayeffect= (-0.3)*sigma; 
        else dayeffect= (-0.3)*sigmaZ; 
        end 
    elseif (mod(hospCountsDay,7)+1==7)  
        if (sigma>1) dayeffect= (-0.5)*sigma; 
        else dayeffect= (-0.5)*sigmaZ; 
        end 
    end 
  
meanie=amplitude*(sin(2*pi*(randStartDay+hospCountsDay)/365))+ baseline;   
rand_var=randn*sigma;  % For large counts   
%rand_var=lognrnd(1.0,sigma);  % For small counts 
  
if (hospCountsDay > 100 && hospCountsDay 
<=(100+(duration(durationIndex)+1)/2)) 
    outbreak =(hospCountsDay-
100)*magnitude/((duration(durationIndex)+1)/2); 
elseif (hospCountsDay > (100+(duration(durationIndex)+1)/2) && 
hospCountsDay < (100+duration(durationIndex))) 
    outbreak = magnitude - (hospCountsDay-100-
((duration(durationIndex)+1)/2))*magnitude/((duration(durationIndex)+1)/
2); 
else  
    outbreak=0; 
end 
  
hospCounts(hospCountsDay) = max(0,ceil(meanie + dayeffect + rand_var + 
outbreak)); 
  
matX1 = [ ones(lookBack,1) (1:1:lookBack)' ]; 
matX2 = zeros(lookBack,6); 
for i=1:lookBack; 
    columnX2=mod(hospCountsDay-i,7)+1; 
    if(columnX2<7) 
        matX2(lookBack+1-i,columnX2)=1; 
    end; 
end; 
matX =[matX1 matX2]; 
  
countLookBack = [ hospCounts((hospCountsDay-lookBack):1:(hospCountsDay-
1)) ]; 
b = regress(countLookBack', matX);  
  
daysInd=[0, 0, 0, 0, 0, 0]; 
columnInd=mod(hospCountsDay,7)+1; 
if(columnInd<7) 
    daysInd(columnInd)=1; 
end; 
  
tomorrowCount = [1 (lookBack+1) daysInd]; % 1 for intercept, (lookBack + 
1) for tomorrow's day # 
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predCount(hospCountsDay) = tomorrowCount*b; %it's like you're predicting 
the mean of the process 
residual(hospCountsDay) = hospCounts(hospCountsDay ) - 
predCount(hospCountsDay); 
  
cusum = max(0, (residual(hospCountsDay) - k + cusum)); 
  
if (hospCountsDay <= 100 && cusum >= h) 
    cusum=0; % False alarm. Don't signal. 
elseif (hospCountsDay > 100) 
    runLengthCounter = runLengthCounter + 1; 
end 
  
hospCountsDay = hospCountsDay + 1; 
end % end while (cusum < h) loop. An alarm has occurred. 
  
alarmCount = alarmCount + 1; 
  
TFSallCusumOpt(alarmCount) = runLengthCounter; 
  
if (runLengthCounter <= duration(durationIndex)) 
    TFScusumOpt(alarmCount) = runLengthCounter; 
else  
    TFScusumOpt(alarmCount) = -99; %did not catch outbreak by its end 
end 
  
runLengthCounter = 0; % after "alarm", reset runLengthCounter and cusum 
cusum = 0;  
end % end dummy for-loop 
  
alarmCount=0; % reset previous alarmCount, reset runningSum stuff  
runningSumTFS=0; 
runningSumTFSCounter=0; 
runningSumTFSall=0; 
runningSqdSumTFScusumOpt = 0; 
  
for (dummy2 = 1:1:numLoops) 
    if (TFScusumOpt(dummy2) > 0) 
        runningSumTFS = runningSumTFS + TFScusumOpt(dummy2); %only 
adding positive TFS values 
        runningSumTFSCounter = runningSumTFSCounter + 1; %number of on-
time signals  
    end % end if TFS(dummy2)>0 
runningSumTFSall = runningSumTFSall + TFSallCusumOpt(dummy2); 
end % end dummy2 for-loop 
  
averageTFScusumOpt(durationIndex) = runningSumTFS/runningSumTFSCounter; 
  
for (dummy23 = 1:1:numLoops) 
    if (TFScusumOpt(dummy23) > 0) 
        runningSqdSumTFScusumOpt = runningSqdSumTFScusumOpt + 
(averageTFScusumOpt(durationIndex) - TFScusumOpt(dummy23))^2; 
    end  
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end  
seAverageTFScusumOpt(durationIndex) = 
(sqrt(runningSqdSumTFScusumOpt/(runningSumTFSCounter - 
1)))/sqrt(runningSumTFSCounter); 
  
averageTFSallCusumOpt(durationIndex) = runningSumTFSall/numLoops; % 
numLoops = # total alarms 
fractionMissedcusumOpt(durationIndex) = (numLoops - 
runningSumTFSCounter)/numLoops; 
  
end % end durationIndex for-loop 
  
  
% START CUSUM METHOD - 8 week (56 day) 
lookback__________________________________________ 
k = sigma/2; 
h = MY_h_56day; % (cusum 56 day) 
lookBack = 56;  
cusum = 0; 
alarmCount = 0; 
runLengthCounter = 0;  
  
for (durationIndex=1:1:7)  
  
for(dummy=1:1:numLoops) 
randStartDay = ceil(rand*365); 
  
for (j = 1:1:(lookBack + 1)) 
meanie=amplitude*(sin(2*pi*(j+randStartDay)/365))+ baseline;  % This is 
the seasonal mean of the process 
rand_var=randn*sigma;  % For large counts 
%rand_var=lognrnd(1.0,sigma);  % For small counts 
     
    %day effect: Monday=1 through Sunday=7 (in mod calcs) 
    if (mod(j,7)+1==1) 
        if (sigma>1) dayeffect= (0.1)*sigma; 
        else dayeffect= (0.1)*sigmaZ; 
        end 
    elseif (mod(j,7)+1==2)  
        if (sigma>1) dayeffect= (0.2)*sigma; 
        else dayeffect= (0.2)*sigmaZ; 
        end 
    elseif (mod(j,7)+1==3)  
        if (sigma>1) dayeffect= (0.3)*sigma; 
        else dayeffect= (0.3)*sigmaZ; 
        end 
    elseif (mod(j,7)+1==4)  
        if (sigma>1) dayeffect= (0.2)*sigma; 
        else dayeffect= (0.2)*sigmaZ; 
        end 
    elseif (mod(j,7)+1==5)  
        if (sigma>1) dayeffect= (0.0)*sigma; 
        else dayeffect= (0.0)*sigmaZ; 
        end 
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    elseif (mod(j,7)+1==6)  
        if (sigma>1) dayeffect= (-0.3)*sigma; 
        else dayeffect= (-0.3)*sigmaZ; 
        end 
    elseif (mod(j,7)+1==7)  
        if (sigma>1) dayeffect= (-0.5)*sigma; 
        else dayeffect= (-0.5)*sigmaZ; 
        end 
    end 
  
hospCounts(j)=max(0,ceil(meanie+dayeffect+rand_var)); % an observation 
on day "hospCountsDay" 
end 
  
hospCountsDay = lookBack + 2; 
  
while (cusum < h) 
             
    %day effect: Monday=1 through Sunday=7 (in mod calcs) 
    if (mod(hospCountsDay,7)+1==1) 
        if (sigma>1) dayeffect= (0.1)*sigma; 
        else dayeffect= (0.1)*sigmaZ; 
        end 
    elseif (mod(hospCountsDay,7)+1==2)  
        if (sigma>1) dayeffect= (0.2)*sigma; 
        else dayeffect= (0.2)*sigmaZ; 
        end 
    elseif (mod(hospCountsDay,7)+1==3)  
        if (sigma>1) dayeffect= (0.3)*sigma; 
        else dayeffect= (0.3)*sigmaZ; 
        end 
    elseif (mod(hospCountsDay,7)+1==4)  
        if (sigma>1) dayeffect= (0.2)*sigma; 
        else dayeffect= (0.2)*sigmaZ; 
        end 
    elseif (mod(hospCountsDay,7)+1==5)  
        if (sigma>1) dayeffect= (0.0)*sigma; 
        else dayeffect= (0.0)*sigmaZ; 
        end 
    elseif (mod(hospCountsDay,7)+1==6)  
        if (sigma>1) dayeffect= (-0.3)*sigma; 
        else dayeffect= (-0.3)*sigmaZ; 
        end 
    elseif (mod(hospCountsDay,7)+1==7)  
        if (sigma>1) dayeffect= (-0.5)*sigma; 
        else dayeffect= (-0.5)*sigmaZ; 
        end 
    end 
  
meanie=amplitude*(sin(2*pi*(randStartDay+hospCountsDay)/365))+ baseline;   
rand_var=randn*sigma;  % For large counts   
%rand_var=lognrnd(1.0,sigma);  % For small counts 
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if (hospCountsDay > 100 && hospCountsDay 
<=(100+(duration(durationIndex)+1)/2)) 
    outbreak =(hospCountsDay-
100)*magnitude/((duration(durationIndex)+1)/2); 
elseif (hospCountsDay > (100+(duration(durationIndex)+1)/2) && 
hospCountsDay < (100+duration(durationIndex))) 
    outbreak = magnitude - (hospCountsDay-100-
((duration(durationIndex)+1)/2))*magnitude/((duration(durationIndex)+1)/
2); 
else  
    outbreak=0; 
end 
  
hospCounts(hospCountsDay) = max(0,ceil(meanie + dayeffect + rand_var + 
outbreak)); 
  
matX1 = [ ones(lookBack,1) (1:1:lookBack)' ]; 
matX2 = zeros(lookBack,6); 
for i=1:lookBack; 
    columnX2=mod(hospCountsDay-i,7)+1; 
    if(columnX2<7) 
        matX2(lookBack+1-i,columnX2)=1; 
    end; 
end; 
matX =[matX1 matX2]; 
  
countLookBack = [ hospCounts((hospCountsDay-lookBack):1:(hospCountsDay-
1)) ]; 
b = regress(countLookBack', matX);  
  
daysInd=[0, 0, 0, 0, 0, 0]; 
columnInd=mod(hospCountsDay,7)+1; 
if(columnInd<7) 
    daysInd(columnInd)=1; 
end; 
  
tomorrowCount = [1 (lookBack+1) daysInd]; % 1 for intercept, (lookBack + 
1) for tomorrow's day # 
predCount(hospCountsDay) = tomorrowCount*b; %it's like you're predicting 
the mean of the process 
residual(hospCountsDay) = hospCounts(hospCountsDay ) - 
predCount(hospCountsDay); 
  
cusum = max(0, (residual(hospCountsDay) - k + cusum)); 
  
if (hospCountsDay <= 100 && cusum >= h) 
    cusum=0; 
elseif (hospCountsDay > 100) 
    runLengthCounter = runLengthCounter + 1; 
end 
  
hospCountsDay = hospCountsDay + 1; 
end % end while (cusum < h) loop. An alarm has occurred. 
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alarmCount = alarmCount + 1; 
TFSallCusum56(alarmCount) = runLengthCounter; 
  
if (runLengthCounter <= duration(durationIndex)) 
    TFScusum56(alarmCount) = runLengthCounter; 
else  
    TFScusum56(alarmCount) = -99; %did not catch outbreak by its end 
end 
  
%TFS(alarmCount); 
runLengthCounter = 0; % after "alarm", reset runLengthCounter and cusum 
cusum = 0;  
end % end dummy for-loop 
  
alarmCount=0; % reset previous alarmCount, reset runningSum stuff  
runningSumTFS=0; 
runningSumTFSCounter=0; 
runningSumTFSall=0; 
runningSqdSumTFScusum56 = 0; 
  
for (dummy2 = 1:1:numLoops) 
    if (TFScusum56(dummy2) > 0) 
        runningSumTFS = runningSumTFS + TFScusum56(dummy2); %only adding 
positive TFS values 
        runningSumTFSCounter = runningSumTFSCounter + 1; 
    end % end if TFS(dummy2)>0 
runningSumTFSall = runningSumTFSall + TFSallCusum56(dummy2); 
end % end dummy2 for-loop 
  
averageTFScusum56(durationIndex) = runningSumTFS/runningSumTFSCounter; 
  
for (dummy23 = 1:1:numLoops) 
    if (TFScusum56(dummy23) > 0) 
        runningSqdSumTFScusum56 = runningSqdSumTFScusum56 + 
(averageTFScusum56(durationIndex) - TFScusum56(dummy23))^2; 
    end  
end  
seAverageTFScusum56(durationIndex) = 
(sqrt(runningSqdSumTFScusum56/(runningSumTFSCounter - 
1)))/sqrt(runningSumTFSCounter); 
  
averageTFSallCusum56(durationIndex) = runningSumTFSall/numLoops; 
fractionMissedcusum56(durationIndex) = (numLoops - 
runningSumTFSCounter)/numLoops; 
  
end % end durationIndex for-loop 
  
%START C1 
METHOD___________________________________________________________ 
sdMovingAvg = 999999; %this will be reset before it is used (SD required 
to be > 0 near line 330) 
  
for (durationIndex=1:1:7)  



 109

runningSumTFSc1=0; 
runningSumTFSCounterc1=0; 
  
alarmCountC1 = 0; 
runLengthCounterC1 = 0;  
TFSc1(1)=0; 
c1h = MYc1h;  
c1Statistic = 0; 
  
for (dummy = 1:1:numLoops) 
randStartDay = ceil(rand*365); 
  
for (j = 1:1:7) 
meanie=amplitude*(sin(2*pi*(j+randStartDay)/365))+ baseline;  % This is 
the seasonal mean of the process 
rand_var=randn*sigma;  % For large counts 
%rand_var=lognrnd(1.0,sigma);  % For small counts 
     
    %day effect: Monday=1 through Sunday=7  
    if (j==1) 
        if (sigma>1) dayeffect= (0.1)*sigma; 
        else dayeffect= (0.1)*sigmaZ; 
        end 
    elseif (j==2)  
        if (sigma>1) dayeffect= (0.2)*sigma; 
        else dayeffect= (0.2)*sigmaZ; 
        end 
    elseif (j==3)  
        if (sigma>1) dayeffect= (0.3)*sigma; 
        else dayeffect= (0.3)*sigmaZ; 
        end 
    elseif (j==4)  
        if (sigma>1) dayeffect= (0.2)*sigma; 
        else dayeffect= (0.2)*sigmaZ; 
        end 
    elseif (j==5)  
        if (sigma>1) dayeffect= (0.0)*sigma; 
        else dayeffect= (0.0)*sigmaZ; 
        end 
    elseif (j==6)  
        if (sigma>1) dayeffect= (-0.3)*sigma; 
        else dayeffect= (-0.3)*sigmaZ; 
        end 
    elseif (j==7)  
        if (sigma>1) dayeffect= (-0.5)*sigma; 
        else dayeffect= (-0.5)*sigmaZ; 
        end 
    end 
  
hospCounts(j)=max(0,ceil(meanie+dayeffect+rand_var)); % an observation 
on day "hospCountsDay" 
end 
  
hospCountsDay = 8; 
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while (c1Statistic < c1h) 
         
    %day effect: Monday=1 through Sunday=7 (in mod calcs) 
    if (mod(hospCountsDay,7)+1==1) 
        if (sigma>1) dayeffect= (0.1)*sigma; 
        else dayeffect= (0.1)*sigmaZ; 
        end 
    elseif (mod(hospCountsDay,7)+1==2)  
        if (sigma>1) dayeffect= (0.2)*sigma; 
        else dayeffect= (0.2)*sigmaZ; 
        end 
    elseif (mod(hospCountsDay,7)+1==3)  
        if (sigma>1) dayeffect= (0.3)*sigma; 
        else dayeffect= (0.3)*sigmaZ; 
        end 
    elseif (mod(hospCountsDay,7)+1==4)  
        if (sigma>1) dayeffect= (0.2)*sigma; 
        else dayeffect= (0.2)*sigmaZ; 
        end 
    elseif (mod(hospCountsDay,7)+1==5)  
        if (sigma>1) dayeffect= (0.0)*sigma; 
        else dayeffect= (0.0)*sigmaZ; 
        end 
    elseif (mod(hospCountsDay,7)+1==6)  
        if (sigma>1) dayeffect= (-0.3)*sigma; 
        else dayeffect= (-0.3)*sigmaZ; 
        end 
    elseif (mod(hospCountsDay,7)+1==7)  
        if (sigma>1) dayeffect= (-0.5)*sigma; 
        else dayeffect= (-0.5)*sigmaZ; 
        end 
    end 
     
meanie=amplitude*(sin(2*pi*(randStartDay+hospCountsDay)/365))+ baseline;   
rand_var=randn*sigma;  % For large counts   
%rand_var=lognrnd(1.0,sigma);  % For small counts 
  
if (hospCountsDay > 100 && hospCountsDay 
<=(100+(duration(durationIndex)+1)/2)) 
    outbreak =(hospCountsDay-
100)*magnitude/((duration(durationIndex)+1)/2); 
elseif (hospCountsDay > (100+(duration(durationIndex)+1)/2) && 
hospCountsDay < (100+duration(durationIndex))) 
    outbreak = magnitude - (hospCountsDay-100-
((duration(durationIndex)+1)/2))*magnitude/((duration(durationIndex)+1)/
2); 
else  
    outbreak=0; 
end 
  
hospCounts(hospCountsDay) = max(0,ceil(meanie + dayeffect + rand_var + 
outbreak)); 
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movingAvg(hospCountsDay) = (hospCounts(hospCountsDay-7) + 
hospCounts(hospCountsDay-6) + hospCounts(hospCountsDay-5) + 
hospCounts(hospCountsDay-4) + hospCounts(hospCountsDay-3) + 
hospCounts(hospCountsDay-2) + hospCounts(hospCountsDay-1))/7; 
  
if (length(movingAvg) >= 14) %need 7 (nonzero) values for an average 
    if (sdMovingAvg > 0) 
        oldsdMovingAvg = sdMovingAvg; 
    end 
    sdMovingAvg = ((((hospCounts(hospCountsDay-7) - 
movingAvg(hospCountsDay-7))^2) + ((hospCounts(hospCountsDay-6) - 
movingAvg(hospCountsDay-6))^2) + ((hospCounts(hospCountsDay-5) - 
movingAvg(hospCountsDay-5))^2) + ((hospCounts(hospCountsDay-4) - 
movingAvg(hospCountsDay-4))^2) + ((hospCounts(hospCountsDay-3) - 
movingAvg(hospCountsDay-3))^2) + ((hospCounts(hospCountsDay-2) - 
movingAvg(hospCountsDay-2))^2) + ((hospCounts(hospCountsDay-1) - 
movingAvg(hospCountsDay-1))^2))/6)^0.5; 
    if (sdMovingAvg==0) 
        sdMovingAvg = oldsdMovingAvg; 
    end 
    c1Statistic = (hospCounts(hospCountsDay) - 
movingAvg(hospCountsDay))/sdMovingAvg; 
    if (hospCountsDay <= 100 && c1Statistic >= c1h) 
        c1Statistic=0; 
    elseif (hospCountsDay > 100) 
        runLengthCounterC1 = runLengthCounterC1 + 1; 
    end 
end 
  
hospCountsDay = hospCountsDay + 1; 
end % end while (c1Statistic < c1h) loop, an alarm has occurred 
  
alarmCountC1 = alarmCountC1 + 1; 
TFSallC1(alarmCountC1) = runLengthCounterC1; 
  
if (runLengthCounterC1 <= duration(durationIndex)) 
    TFSc1(alarmCountC1) = runLengthCounterC1; 
else  
    TFSc1(alarmCountC1) = -99; %did not catch outbreak by its end 
end 
  
runLengthCounterC1 = 0; % after "alarm", reset runLengthCounter and 
cusum 
c1Statistic=0;  
  
end % dummy's for loop 
  
alarmCountC1=0; % reset previous alarmCount, reset runningSum stuff  
runningSumTFSc1=0; 
runningSumTFSCounterc1=0; 
runningSumTFSall=0; 
runningSqdSumTFSc1 = 0; 
  
for (dummy2 = 1:1:numLoops) 
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    if (TFSc1(dummy2) > 0) 
        runningSumTFSc1 = runningSumTFSc1 + TFSc1(dummy2); 
        runningSumTFSCounterc1 = runningSumTFSCounterc1 + 1; 
    end  
runningSumTFSall = runningSumTFSall + TFSallC1(dummy2); 
end  
  
averageTFSc1(durationIndex) = runningSumTFSc1/runningSumTFSCounterc1; 
  
for (dummy23 = 1:1:numLoops) 
    if (TFSc1(dummy23) > 0) 
        runningSqdSumTFSc1 = (averageTFSc1(durationIndex) - 
TFSc1(dummy23))^2; 
    end  
end  
seAverageTFSc1(durationIndex) = 
(sqrt(runningSqdSumTFSc1/(runningSumTFSCounterc1 - 
1)))/sqrt(runningSumTFSCounterc1); 
  
averageTFSallC1(durationIndex) = runningSumTFSall/numLoops; 
fractionMissedc1(durationIndex) = (numLoops - 
runningSumTFSCounterc1)/numLoops; 
  
end % end durationIndex for-loop 
  
% START C2 METHOD__________________________________________ 
sdMovingAvg = 999999; 
for (durationIndex=1:1:7)  
runningSumTFSc2=0; 
runningSumTFSCounterc2=0;  
runningSumTFSc3=0; 
runningSumTFSCounterc3=0; 
  
alarmCountC2 = 0; 
alarmCountC3 = 0; 
runLengthCounterC2 = 0;  
runLengthCounterC3 = 0; 
TFSc2(1) = 0; 
TFSc3(1) = 0; 
c2h = MYc2h; 
c3h = MYc3h; 
c2Statistic = 0; 
c2StatTodayMinus2 = 0; 
c2StatTodayMinus1 = 0; 
c2StatToday = 0; 
c3Statistic = 0; 
  
for (dummy = 1:1:numLoops) 
randStartDay = ceil(rand*365); 
  
for (j = 1:1:9) 
meanie=amplitude*(sin(2*pi*(j+randStartDay)/365))+ baseline;  % This is 
the seasonal mean of the process 
rand_var=randn*sigma;  % For large counts 



 113

%rand_var=lognrnd(1.0,sigma);  % For small counts 
     
    %day effect: Monday=1 through Sunday=7 
    if (j==1) 
        if (sigma>1) dayeffect= (0.1)*sigma; 
        else dayeffect= (0.1)*sigmaZ; 
        end 
    elseif (j==2)  
        if (sigma>1) dayeffect= (0.2)*sigma; 
        else dayeffect= (0.2)*sigmaZ; 
        end 
    elseif (j==3)  
        if (sigma>1) dayeffect= (0.3)*sigma; 
        else dayeffect= (0.3)*sigmaZ; 
        end 
    elseif (j==4)  
        if (sigma>1) dayeffect= (0.2)*sigma; 
        else dayeffect= (0.2)*sigmaZ; 
        end 
    elseif (j==5)  
        if (sigma>1) dayeffect= (0.0)*sigma; 
        else dayeffect= (0.0)*sigmaZ; 
        end 
    elseif (j==6)  
        if (sigma>1) dayeffect= (-0.3)*sigma; 
        else dayeffect= (-0.3)*sigmaZ; 
        end 
    elseif (j==7)  
        if (sigma>1) dayeffect= (-0.5)*sigma; 
        else dayeffect= (-0.5)*sigmaZ; 
        end 
  elseif (j==8)  
        if (sigma>1) dayeffect= (0.1)*sigma; 
        else dayeffect= (0.1)*sigmaZ; 
        end 
    elseif (j==9)  
        if (sigma>1) dayeffect= (0.2)*sigma; 
        else dayeffect= (0.2)*sigmaZ; 
        end 
  end 
  
hospCounts(j)=max(0,ceil(meanie+rand_var+dayeffect)); % an observation 
on day "hospCountsDay" 
end 
  
hospCountsDay = 10; 
  
while (c2Statistic < c2h) 
     
    %day effect: Monday=1 through Sunday=7 (in mod calcs) 
    if (mod(hospCountsDay,7)+1==1) 
        if (sigma>1) dayeffect= (0.1)*sigma; 
        else dayeffect= (0.1)*sigmaZ; 
        end 
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    elseif (mod(hospCountsDay,7)+1==2)  
        if (sigma>1) dayeffect= (0.2)*sigma; 
        else dayeffect= (0.2)*sigmaZ; 
        end 
    elseif (mod(hospCountsDay,7)+1==3)  
        if (sigma>1) dayeffect= (0.3)*sigma; 
        else dayeffect= (0.3)*sigmaZ; 
        end 
    elseif (mod(hospCountsDay,7)+1==4)  
        if (sigma>1) dayeffect= (0.2)*sigma; 
        else dayeffect= (0.2)*sigmaZ; 
        end 
    elseif (mod(hospCountsDay,7)+1==5)  
        if (sigma>1) dayeffect= (0.0)*sigma; 
        else dayeffect= (0.0)*sigmaZ; 
        end 
    elseif (mod(hospCountsDay,7)+1==6)  
        if (sigma>1) dayeffect= (-0.3)*sigma; 
        else dayeffect= (-0.3)*sigmaZ; 
        end 
    elseif (mod(hospCountsDay,7)+1==7)  
        if (sigma>1) dayeffect= (-0.5)*sigma; 
        else dayeffect= (-0.5)*sigmaZ; 
        end 
    end 
  
meanie=amplitude*(sin(2*pi*(randStartDay+hospCountsDay)/365))+ baseline;   
rand_var=randn*sigma;  % For large counts   
%rand_var=lognrnd(1.0,sigma);  % For small counts 
  
if (hospCountsDay > 100 && hospCountsDay 
<=(100+(duration(durationIndex)+1)/2)) 
    outbreak =(hospCountsDay-
100)*magnitude/((duration(durationIndex)+1)/2); 
elseif (hospCountsDay > (100+(duration(durationIndex)+1)/2) && 
hospCountsDay < (100+duration(durationIndex))) 
    outbreak = magnitude - (hospCountsDay-100-
((duration(durationIndex)+1)/2))*magnitude/((duration(durationIndex)+1)/
2); 
else  
    outbreak=0; 
end 
  
hospCounts(hospCountsDay)=max(0,ceil(meanie+dayeffect+rand_var+outbreak)
); 
movingAvg(hospCountsDay) = (hospCounts(hospCountsDay-9) + 
hospCounts(hospCountsDay-8) + hospCounts(hospCountsDay-7) + 
hospCounts(hospCountsDay-6) + hospCounts(hospCountsDay-5) + 
hospCounts(hospCountsDay-4) + hospCounts(hospCountsDay-3))/7; 
  
if (length(movingAvg) >= 16) %need 7 (16-9) days for an average 
    if (sdMovingAvg > 0) 
        oldsdMovingAvg = sdMovingAvg; 
    end 
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sdMovingAvg = ((((hospCounts(hospCountsDay-9) - movingAvg(hospCountsDay-
9))^2) + ((hospCounts(hospCountsDay-8) - movingAvg(hospCountsDay-8))^2) 
+ ((hospCounts(hospCountsDay-7) - movingAvg(hospCountsDay-7))^2) + 
((hospCounts(hospCountsDay-6) - movingAvg(hospCountsDay-6))^2) + 
((hospCounts(hospCountsDay-5) - movingAvg(hospCountsDay-5))^2) + 
((hospCounts(hospCountsDay-4) - movingAvg(hospCountsDay-4))^2) + 
((hospCounts(hospCountsDay-3) - movingAvg(hospCountsDay-3))^2))/6)^0.5;     
    if (sdMovingAvg == 0) 
        sdMovingAvg = oldsdMovingAvg; 
    end 
c2Statistic = (hospCounts(hospCountsDay) - 
movingAvg(hospCountsDay))/sdMovingAvg; 
c2StatTodayMinus2 = c2StatTodayMinus1; % values on right are one day old 
right now 
c2StatTodayMinus1 = c2StatToday; 
c2StatToday = c2Statistic; 
  
    if (hospCountsDay <= 100 && c2Statistic >= c2h) 
        c2Statistic=0; 
    elseif (hospCountsDay > 100) 
        runLengthCounterC2 = runLengthCounterC2 + 1; 
    end 
end 
  
hospCountsDay = hospCountsDay + 1; 
end % end while (c2Statistic < c2h) loop, an alarm in C2 has occurred 
  
alarmCountC2 = alarmCountC2 + 1; 
TFSallC2(alarmCountC2) = runLengthCounterC2; 
  
if (runLengthCounterC2 <= duration(durationIndex)) 
    TFSc2(alarmCountC2) = runLengthCounterC2; 
else  
    TFSc2(alarmCountC2) = -99; %did not catch outbreak by its end 
end 
  
runLengthCounterC2 = 0; % after "alarm", reset runLengthCounter and 
cusum 
c2Statistic=0;  
  
end % dummy's for loop 
  
alarmCountC2=0; % reset previous alarmCount, reset runningSum stuff  
runningSumTFSc2=0; 
runningSumTFSCounterc2=0; 
runningSumTFSallC2=0; 
  
for (dummy2 = 1:1:numLoops) 
    if (TFSc2(dummy2) > 0) 
        runningSumTFSc2 = runningSumTFSc2 + TFSc2(dummy2); 
        runningSumTFSCounterc2 = runningSumTFSCounterc2 + 1; 
    end  
runningSumTFSallC2 = runningSumTFSallC2 + TFSallC2(dummy2);     
end  
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averageTFSc2(durationIndex) = runningSumTFSc2/runningSumTFSCounterc2; 
  
for (dummy1 = 1:1:numLoops) 
    if (TFSc2(dummy1) > 0) 
        runningSqdSumTFSc2 = (averageTFSc2(durationIndex) - 
TFSc2(dummy1))^2; 
    end  
end  
seAverageTFSc2(durationIndex) = 
(sqrt(runningSqdSumTFSc2/(runningSumTFSCounterc2 - 
1)))/sqrt(runningSumTFSCounterc2); 
  
averageTFSallC2(durationIndex) = runningSumTFSallC2/numLoops; 
fractionMissedc2(durationIndex) = (numLoops - 
runningSumTFSCounterc2)/numLoops; 
  
end % end durationIndex for-loop 
  
TFSc2; 
TFSallC2; 
averageTFSc2 
seAverageTFSc2 % for the given true signal 
fractionMissedc2 
averageTFSallC2 
  
% START C3 METHOD__________________________________________ 
for (durationIndex=1:1:7)  
% runningSumTFSc2=0; 
% runningSumTFSCounterc2=0;  
runningSumTFSc3=0; 
runningSumTFSCounterc3=0; 
  
% alarmCountC2 = 0; 
alarmCountC3 = 0; 
% runLengthCounterC2 = 0;  
runLengthCounterC3 = 0; 
% TFSc2(1) = 0; 
TFSc3(1) = 0; 
% c2h = MYc2h; 
c3h = MYc3h; 
c2Statistic = 0; 
c2StatTodayMinus2 = 0; 
c2StatTodayMinus1 = 0; 
c2StatToday = 0; 
c3Statistic = 0; 
  
for (dummy = 1:1:numLoops) 
randStartDay = ceil(rand*365); 
  
for (j = 1:1:9) 
meanie=amplitude*(sin(2*pi*(j+randStartDay)/365))+ baseline;  % This is 
the seasonal mean of the process 
rand_var=randn*sigma;  % For large counts 
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%rand_var=lognrnd(1.0,sigma);  % For small counts 
     
    %day effect: Monday=1 through Sunday=7  
    if (j==1) 
        if (sigma>1) dayeffect= (0.1)*sigma; 
        else dayeffect= (0.1)*sigmaZ; 
        end 
    elseif (j==2)  
        if (sigma>1) dayeffect= (0.2)*sigma; 
        else dayeffect= (0.2)*sigmaZ; 
        end 
    elseif (j==3)  
        if (sigma>1) dayeffect= (0.3)*sigma; 
        else dayeffect= (0.3)*sigmaZ; 
        end 
    elseif (j==4)  
        if (sigma>1) dayeffect= (0.2)*sigma; 
        else dayeffect= (0.2)*sigmaZ; 
        end 
    elseif (j==5)  
        if (sigma>1) dayeffect= (0.0)*sigma; 
        else dayeffect= (0.0)*sigmaZ; 
        end 
    elseif (j==6)  
        if (sigma>1) dayeffect= (-0.3)*sigma; 
        else dayeffect= (-0.3)*sigmaZ; 
        end 
    elseif (j==7)  
        if (sigma>1) dayeffect= (-0.5)*sigma; 
        else dayeffect= (-0.5)*sigmaZ; 
        end 
  elseif (j==8)  
        if (sigma>1) dayeffect= (0.1)*sigma; 
        else dayeffect= (0.1)*sigmaZ; 
        end 
    elseif (j==9)  
        if (sigma>1) dayeffect= (0.2)*sigma; 
        else dayeffect= (0.2)*sigmaZ; 
        end 
  end 
  
hospCounts(j)=max(0,ceil(meanie+dayeffect+rand_var)); % an observation 
on day "hospCountsDay" 
end 
  
hospCountsDay = 10; 
  
while (c3Statistic < c3h) 
     
    %day effect: Monday=1 through Sunday=7 (in mod calcs) 
    if (mod(hospCountsDay,7)+1==1) 
        if (sigma>1) dayeffect= (0.1)*sigma; 
        else dayeffect= (0.1)*sigmaZ; 
        end 
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    elseif (mod(hospCountsDay,7)+1==2)  
        if (sigma>1) dayeffect= (0.2)*sigma; 
        else dayeffect= (0.2)*sigmaZ; 
        end 
    elseif (mod(hospCountsDay,7)+1==3)  
        if (sigma>1) dayeffect= (0.3)*sigma; 
        else dayeffect= (0.3)*sigmaZ; 
        end 
    elseif (mod(hospCountsDay,7)+1==4)  
        if (sigma>1) dayeffect= (0.2)*sigma; 
        else dayeffect= (0.2)*sigmaZ; 
        end 
    elseif (mod(hospCountsDay,7)+1==5)  
        if (sigma>1) dayeffect= (0.0)*sigma; 
        else dayeffect= (0.0)*sigmaZ; 
        end 
    elseif (mod(hospCountsDay,7)+1==6)  
        if (sigma>1) dayeffect= (-0.3)*sigma; 
        else dayeffect= (-0.3)*sigmaZ; 
        end 
    elseif (mod(hospCountsDay,7)+1==7)  
        if (sigma>1) dayeffect= (-0.5)*sigma; 
        else dayeffect= (-0.5)*sigmaZ; 
        end 
    end 
     
meanie=amplitude*(sin(2*pi*(randStartDay+hospCountsDay)/365))+ baseline;   
rand_var=randn*sigma;  % For large counts   
%rand_var=lognrnd(1.0,sigma);  % For small counts 
  
if (hospCountsDay > 100 && hospCountsDay 
<=(100+(duration(durationIndex)+1)/2)) 
    outbreak =(hospCountsDay-
100)*magnitude/((duration(durationIndex)+1)/2); 
elseif (hospCountsDay > (100+(duration(durationIndex)+1)/2) && 
hospCountsDay < (100+duration(durationIndex))) 
    outbreak = magnitude - (hospCountsDay-100-
((duration(durationIndex)+1)/2))*magnitude/((duration(durationIndex)+1)/
2); 
else  
    outbreak=0; 
end 
  
hospCounts(hospCountsDay) = 
max(0,ceil(meanie+dayeffect+rand_var+outbreak)); 
movingAvg(hospCountsDay) = (hospCounts(hospCountsDay-9) + 
hospCounts(hospCountsDay-8) + hospCounts(hospCountsDay-7) + 
hospCounts(hospCountsDay-6) + hospCounts(hospCountsDay-5) + 
hospCounts(hospCountsDay-4) + hospCounts(hospCountsDay-3))/7; 
  
if (length(movingAvg) >= 16) %need 7 (16-9) days for an average 
    if (sdMovingAvg > 0) 
        oldsdMovingAvg = sdMovingAvg; 
    end 
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sdMovingAvg = ((((hospCounts(hospCountsDay-9) - movingAvg(hospCountsDay-
9))^2) + ((hospCounts(hospCountsDay-8) - movingAvg(hospCountsDay-8))^2) 
+ ((hospCounts(hospCountsDay-7) - movingAvg(hospCountsDay-7))^2) + 
((hospCounts(hospCountsDay-6) - movingAvg(hospCountsDay-6))^2) + 
((hospCounts(hospCountsDay-5) - movingAvg(hospCountsDay-5))^2) + 
((hospCounts(hospCountsDay-4) - movingAvg(hospCountsDay-4))^2) + 
((hospCounts(hospCountsDay-3) - movingAvg(hospCountsDay-3))^2))/6)^0.5;     
    if (sdMovingAvg == 0) 
        sdMovingAvg = oldsdMovingAvg; 
    end 
c2Statistic = (hospCounts(hospCountsDay) - 
movingAvg(hospCountsDay))/sdMovingAvg; 
c2StatTodayMinus2 = c2StatTodayMinus1; % values on right are one day old 
right now 
c2StatTodayMinus1 = c2StatToday; 
c2StatToday = c2Statistic; 
end 
  
if (length(movingAvg) >= 19) %need 3 C2 values for C3 (and all 3 c2Stat 
values are != 0) 
c3Statistic = max(0, (c2StatToday) - 1) + max(0, (c2StatTodayMinus1) - 
1) + max(0, (c2StatTodayMinus2) - 1); 
    if (hospCountsDay <= 100 && c3Statistic >= c3h) 
        c3Statistic = 0; 
    elseif (hospCountsDay > 100) 
        runLengthCounterC3 = runLengthCounterC3 + 1; 
    end 
end 
  
hospCountsDay = hospCountsDay + 1; 
end % end while (c3Statistic < c3h) loop, an alarm in C2 has occurred 
  
alarmCountC3 = alarmCountC3 + 1; 
TFSallC3(alarmCountC3) = runLengthCounterC3; 
  
if (runLengthCounterC3 <= duration(durationIndex)) 
    TFSc3(alarmCountC3) = runLengthCounterC3; 
else  
    TFSc3(alarmCountC3) = -99; %did not catch outbreak by its end 
end 
  
runLengthCounterC3 = 0; % after "alarm", reset runLengthCounter and 
cusum 
c3Statistic=0;  
  
end % dummy's for loop, you have all your alarms in C3 
  
alarmCountC3=0; 
  
runningSumTFSc3=0; 
runningSumTFSCounterc3=0; 
runningSumTFSallC3=0; 
  
for (dummy3 = 1:1:length(TFSc3)) 
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    if (TFSc3(dummy3) > 0) 
        runningSumTFSc3 = runningSumTFSc3 + TFSc3(dummy3); 
        runningSumTFSCounterc3 = runningSumTFSCounterc3 + 1; 
    end 
runningSumTFSallC3 = runningSumTFSallC3 + TFSallC3(dummy3);         
end 
  
averageTFSc3(durationIndex) = runningSumTFSc3/runningSumTFSCounterc3; 
  
for (dummy23 = 1:1:length(TFSc3)) 
    if (TFSc3(dummy23) > 0) 
        runningSqdSumTFSc3 = (averageTFSc3(durationIndex) - 
TFSc3(dummy23))^2; 
    end  
end  
seAverageTFSc3(durationIndex) = 
(sqrt(runningSqdSumTFSc3/(runningSumTFSCounterc3 - 
1)))/sqrt(runningSumTFSCounterc3); 
  
averageTFSallC3(durationIndex) = runningSumTFSallC3/numLoops; 
fractionMissedc3(durationIndex) = (numLoops - 
runningSumTFSCounterc3)/numLoops; 
  
end % end durationIndex for-loop 
  
% OUTPUT----------------------------------------------------------------
--- 
averageTFScusumOpt 
seAverageTFScusumOpt 
fractionMissedcusumOpt 
averageTFSallCusumOpt 
  
averageTFScusum56 
seAverageTFScusum56 
fractionMissedcusum56 
averageTFSallCusum56 
  
averageTFSc1 
seAverageTFSc1 
fractionMissedc1 
averageTFSallC1 
  
averageTFSc2 
seAverageTFSc2 % for the given true signal 
fractionMissedc2 
averageTFSallC2 
  
averageTFSc3 
seAverageTFSc3 % for the given true signal 
fractionMissedc3 
averageTFSallC3 
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%SAVING COMMANDS (vectors saved together as a MATLAB file, and all are 
loaded into workspace upon opening the file) 
save(['scenario_' num2str(scenarioNumber) '_data'], 
'averageTFScusumOpt',... 
'seAverageTFScusumOpt', 'fractionMissedcusumOpt', 
'averageTFSallCusumOpt',... 
'averageTFScusum56', 'seAverageTFScusum56', 'fractionMissedcusum56', 
'averageTFSallCusum56',... 
'averageTFSc1', 'seAverageTFSc1', 'fractionMissedc1', 
'averageTFSallC1',... 
'averageTFSc2', 'seAverageTFSc2', 'fractionMissedc2', 
'averageTFSallC2',... 
'averageTFSc3', 'seAverageTFSc3', 'fractionMissedc3', 
'averageTFSallC3'); 
  
%PLOTTING COMMANDS 
  
plotATFSgivenTrueSignal = figure('Name','ATFS Given True 
Signal','NumberTitle','off'); 
plot(duration, averageTFScusumOpt, '-*k', duration, averageTFScusum56, 
'-ok', duration, averageTFSc1, '--xk', duration, averageTFSc2, ':+k', 
duration, averageTFSc3, '-.vk'); 
title({'Plot of ATFS Given True Signal'; ['Scenario: ' 
num2str(scenarioNumber)]}); 
xlabel('Outbreak Duration'); 
ylabel('Average TFS | True Signal'); 
set(gca, 'Xtick', 3:2:15) 
axis('tight') 
legend('CUSUM (40)', 'CUSUM (56)', 'C1','C2', 'C3', 'Location', 
'NorthWest') 
%axis([xmin, xmax, ymin, ymax]) 
axis([3, 15, 0, 8]) 
saveas(plotATFSgivenTrueSignal,['H:\THESIScode\FinalOutputAndPlots\plotA
TFSgivenTrueSignal_S' num2str(scenarioNumber) '.fig']); 
  
plotFractionMissed = figure('Name','Fraction 
Missed','NumberTitle','off'); 
plot(duration, fractionMissedcusumOpt, '-*k', duration, 
fractionMissedcusum56, '-ok', duration, fractionMissedc1, '--xk', 
duration, fractionMissedc2, ':+k', duration, fractionMissedc3, '-.vk'); 
title({'Plot of Fraction Missed'; ['Scenario: ' 
num2str(scenarioNumber)]}); 
xlabel('Outbreak Duration'); 
ylabel('Fraction Missed'); 
set(gca, 'Xtick', 3:2:15) 
axis('tight') 
legend('CUSUM (40)', 'CUSUM (56)', 'C1','C2', 'C3', 'Location', 
'SouthWest') 
axis([3, 15, 0, 1]) 
saveas(plotFractionMissed,['H:\THESIScode\FinalOutputAndPlots\plotFracti
onMissed_S' num2str(scenarioNumber) '.fig']); 
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